BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 10487923)

  • 1. Endocytosis and vacuolar morphology in Saccharomyces cerevisiae are altered in response to ethanol stress or heat shock.
    Meaden PG; Arneborg N; Guldfeldt LU; Siegumfeldt H; Jakobsen M
    Yeast; 1999 Sep; 15(12):1211-22. PubMed ID: 10487923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast.
    Vida TA; Emr SD
    J Cell Biol; 1995 Mar; 128(5):779-92. PubMed ID: 7533169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae.
    Matsuura K; Takagi H
    J Biosci Bioeng; 2005 Nov; 100(5):538-44. PubMed ID: 16384793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of yeast mutants defective for localization of vacuolar vital dyes.
    Zheng B; Wu JN; Schober W; Lewis DE; Vida T
    Proc Natl Acad Sci U S A; 1998 Sep; 95(20):11721-6. PubMed ID: 9751732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flocculation onset in Saccharomyces cerevisiae: effect of ethanol, heat and osmotic stress.
    Claro FB; Rijsbrack K; Soares EV
    J Appl Microbiol; 2007 Mar; 102(3):693-700. PubMed ID: 17309618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae.
    Izawa S; Kita T; Ikeda K; Inoue Y
    Biochem J; 2008 Aug; 414(1):111-9. PubMed ID: 18442359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of Saccharomyces cerevisiae mutants defective in fluid-phase endocytosis.
    Wiederkehr A; Meier KD; Riezman H
    Yeast; 2001 Jun; 18(8):759-73. PubMed ID: 11378903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dual mechanism of the antifungal effect of new lysosomotropic agents on the Saccharomyces cerevisiae RXII strain.
    Krasowska A; Chmielewska L; Łuczyński J; Witek S; Sigler K
    Cell Mol Biol Lett; 2003; 8(1):111-20. PubMed ID: 12655364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae.
    Ding J; Huang X; Zhang L; Zhao N; Yang D; Zhang K
    Appl Microbiol Biotechnol; 2009 Nov; 85(2):253-63. PubMed ID: 19756577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock.
    Takemura R; Inoue Y; Izawa S
    J Cell Sci; 2004 Aug; 117(Pt 18):4189-97. PubMed ID: 15280434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The heat shock response is dependent on the external environment and on rapid ionic balancing by pharmacological agents in Saccharomyces cerevisiae.
    Vovou I; Delitheos A; Tiligada E
    J Appl Microbiol; 2004; 96(6):1271-7. PubMed ID: 15139919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependent N-glycosylation of plasma membrane heat shock protein Hsp30p in Saccharomyces cerevisiae.
    Kamo K; Takabatake A; Inoue Y; Izawa S
    Biochem Biophys Res Commun; 2012 Mar; 420(1):119-23. PubMed ID: 22405770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.
    Canetta E; Adya AK; Walker GM
    FEMS Microbiol Lett; 2006 Feb; 255(2):308-15. PubMed ID: 16448511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.
    Izawa S; Ikeda K; Miki T; Wakai Y; Inoue Y
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):277-82. PubMed ID: 20625715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells.
    Bolte S; Talbot C; Boutte Y; Catrice O; Read ND; Satiat-Jeunemaitre B
    J Microsc; 2004 May; 214(Pt 2):159-73. PubMed ID: 15102063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mercaptoethanol and dithiothreitol decrease the difference of electrochemical proton potentials across the yeast plasma and vacuolar membranes and activate their H(+)-ATPases.
    Petrov VV; Smirnova VV; Okorokov LA
    Yeast; 1992 Aug; 8(8):589-98. PubMed ID: 1441739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hsp104 responds to heat and oxidative stress with different intracellular localization in Saccharomyces cerevisiae.
    Fujita K; Kawai R; Iwahashi H; Komatsu Y
    Biochem Biophys Res Commun; 1998 Jul; 248(3):542-7. PubMed ID: 9703962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of sodium azide on heat-shock resistance in Saccharomyces cerevisiae and Debaryomyces vanriji yeasts].
    Rikhvanov EG; Varakina NN; Rusaleva TM; Rachenko EI; Kiseleva VA; Voĭnikov VK
    Mikrobiologiia; 2001; 70(3):300-4. PubMed ID: 11450450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural model of the vacuolar ATPase from transmission electron microscopy.
    Wilkens S; Zhang Z; Zheng Y
    Micron; 2005; 36(2):109-26. PubMed ID: 15629643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microinjecting FM4-64 validates it as a marker of the endocytic pathway in plants.
    van Gisbergen PA; Esseling-Ozdoba A; Vos JW
    J Microsc; 2008 Aug; 231(2):284-90. PubMed ID: 18778426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.