BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10488089)

  • 1. Redox reagents and divalent cations alter the kinetics of cystic fibrosis transmembrane conductance regulator channel gating.
    Harrington MA; Gunderson KL; Kopito RR
    J Biol Chem; 1999 Sep; 274(39):27536-44. PubMed ID: 10488089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of CFTR Cl- channel gating by ATP binding and hydrolysis.
    Ikuma M; Welsh MJ
    Proc Natl Acad Sci U S A; 2000 Jul; 97(15):8675-80. PubMed ID: 10880569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of conventional ATPase properties in CFTR chloride channel gating.
    Schultz BD; Bridges RJ; Frizzell RA
    J Membr Biol; 1996 May; 151(1):63-75. PubMed ID: 8661489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme.
    Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC
    J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rectification of cystic fibrosis transmembrane conductance regulator chloride channel mediated by extracellular divalent cations.
    Zhao J; Zerhusen B; Xie J; Drumm ML; Davis PB; Ma J
    Biophys J; 1996 Nov; 71(5):2458-66. PubMed ID: 8913585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects.
    Wang F; Zeltwanger S; Yang IC; Nairn AC; Hwang TC
    J Gen Physiol; 1998 Mar; 111(3):477-90. PubMed ID: 9482713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positioning of extracellular loop 1 affects pore gating of the cystic fibrosis transmembrane conductance regulator.
    Infield DT; Cui G; Kuang C; McCarty NA
    Am J Physiol Lung Cell Mol Physiol; 2016 Mar; 310(5):L403-14. PubMed ID: 26684250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct Mg(2+)-dependent steps rate limit opening and closing of a single CFTR Cl(-) channel.
    Dousmanis AG; Nairn AC; Gadsby DC
    J Gen Physiol; 2002 Jun; 119(6):545-59. PubMed ID: 12034762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFTR gating I: Characterization of the ATP-dependent gating of a phosphorylation-independent CFTR channel (DeltaR-CFTR).
    Bompadre SG; Ai T; Cho JH; Wang X; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2005 Apr; 125(4):361-75. PubMed ID: 15767295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altering intracellular pH reveals the kinetic basis of intraburst gating in the CFTR Cl
    Chen JH; Xu W; Sheppard DN
    J Physiol; 2017 Feb; 595(4):1059-1076. PubMed ID: 27779763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational states of CFTR associated with channel gating: the role ATP binding and hydrolysis.
    Gunderson KL; Kopito RR
    Cell; 1995 Jul; 82(2):231-9. PubMed ID: 7543023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C; Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal bridges illuminate transmembrane domain movements during gating of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    J Biol Chem; 2014 Oct; 289(41):28149-59. PubMed ID: 25143385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel by thyroid hormones involves multiple mechanisms.
    Cai Z; Li H; Chen JH; Sheppard DN
    Am J Physiol Cell Physiol; 2013 Oct; 305(8):C817-28. PubMed ID: 23784545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of epithelial sodium channels by the cystic fibrosis transmembrane conductance regulator.
    Ismailov II; Awayda MS; Jovov B; Berdiev BK; Fuller CM; Dedman JR; Kaetzel M; Benos DJ
    J Biol Chem; 1996 Mar; 271(9):4725-32. PubMed ID: 8617738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential sensitivity of the cystic fibrosis (CF)-associated mutants G551D and G1349D to potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel.
    Cai Z; Taddei A; Sheppard DN
    J Biol Chem; 2006 Jan; 281(4):1970-7. PubMed ID: 16311240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between permeation and gating in a putative pore domain mutant in the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; McDonough SI; McCarty NA
    Biophys J; 2000 Jul; 79(1):298-313. PubMed ID: 10866956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.