These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10488114)

  • 1. Mutants that alter the covalent structure of catalase hydroperoxidase II from Escherichia coli.
    Maté MJ; Sevinc MS; Hu B; Bujons J; Bravo J; Switala J; Ens W; Loewen PC; Fita I
    J Biol Chem; 1999 Sep; 274(39):27717-25. PubMed ID: 10488114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a novel bond between a histidine and the essential tyrosine in catalase HPII of Escherichia coli.
    Bravo J; Fita I; Ferrer JC; Ens W; Hillar A; Switala J; Loewen PC
    Protein Sci; 1997 May; 6(5):1016-23. PubMed ID: 9144772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalase HPII of Escherichia coli catalyzes the conversion of protoheme to cis-heme d.
    Loewen PC; Switala J; von Ossowski I; Hillar A; Christie A; Tattrie B; Nicholls P
    Biochemistry; 1993 Sep; 32(38):10159-64. PubMed ID: 8399141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of catalase HPII from Escherichia coli at 1.9 A resolution.
    Bravo J; Mate MJ; Schneider T; Switala J; Wilson K; Loewen PC; Fita I
    Proteins; 1999 Feb; 34(2):155-66. PubMed ID: 10022351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual Cys-Tyr covalent bond in a large catalase.
    Díaz A; Horjales E; Rudiño-Piñera E; Arreola R; Hansberg W
    J Mol Biol; 2004 Sep; 342(3):971-85. PubMed ID: 15342250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate flow in catalases deduced from the crystal structures of active site variants of HPII from Escherichia coli.
    Melik-Adamyan W; Bravo J; Carpena X; Switala J; Maté MJ; Fita I; Loewen PC
    Proteins; 2001 Aug; 44(3):270-81. PubMed ID: 11455600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity, peroxide compound formation, and heme d synthesis in Escherichia coli HPII catalase.
    Obinger C; Maj M; Nicholls P; Loewen P
    Arch Biochem Biophys; 1997 Jun; 342(1):58-67. PubMed ID: 9185614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the structure of catalase HPII of Escherichia coli--a review.
    Loewen P
    Gene; 1996 Nov; 179(1):39-44. PubMed ID: 8955627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of catalase HPII from Escherichia coli.
    Bravo J; Verdaguer N; Tormo J; Betzel C; Switala J; Loewen PC; Fita I
    Structure; 1995 May; 3(5):491-502. PubMed ID: 7663946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the heme d of Penicillium vitale and Escherichia coli catalases.
    Murshudov GN; Grebenko AI; Barynin V; Dauter Z; Wilson KS; Vainshtein BK; Melik-Adamyan W; Bravo J; Ferrán JM; Ferrer JC; Switala J; Loewen PC; Fita I
    J Biol Chem; 1996 Apr; 271(15):8863-8. PubMed ID: 8621527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the lateral channel in catalase HPII of Escherichia coli.
    Sevinc MS; Maté MJ; Switala J; Fita I; Loewen PC
    Protein Sci; 1999 Mar; 8(3):490-8. PubMed ID: 10091651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An electrical potential in the access channel of catalases enhances catalysis.
    Chelikani P; Carpena X; Fita I; Loewen PC
    J Biol Chem; 2003 Aug; 278(33):31290-6. PubMed ID: 12777389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of heme orientation and binding by a single residue in catalase HPII of Escherichia coli.
    Jha V; Louis S; Chelikani P; Carpena X; Donald LJ; Fita I; Loewen PC
    Biochemistry; 2011 Mar; 50(12):2101-10. PubMed ID: 21332158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the activities of catalase-peroxidase HPI of Escherichia coli by site-directed mutagenesis.
    Hillar A; Peters B; Pauls R; Loboda A; Zhang H; Mauk AG; Loewen PC
    Biochemistry; 2000 May; 39(19):5868-75. PubMed ID: 10801338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of Phe413 to Tyr in catalase KatE from Escherichia coli leads to side chain damage and main chain cleavage.
    Jha V; Donald LJ; Loewen PC
    Arch Biochem Biophys; 2012 Sep; 525(2):207-14. PubMed ID: 22172685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. E. coli HPII catalase interaction with high spin ligands: formate and fluoride as active site probes.
    Maj M; Loewen P; Nicholls P
    Biochim Biophys Acta; 1998 May; 1384(2):209-22. PubMed ID: 9659382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a large subunit catalase truncated by proteolytic cleavage.
    Chelikani P; Carpena X; Perez-Luque R; Donald LJ; Duckworth HW; Switala J; Fita I; Loewen PC
    Biochemistry; 2005 Apr; 44(15):5597-605. PubMed ID: 15823018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity.
    Zhou BP; Lewis DA; Kwan SW; Kirksey TJ; Abell CW
    Biochemistry; 1995 Jul; 34(29):9526-31. PubMed ID: 7626622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme.
    Njuma OJ; Davis I; Ndontsa EN; Krewall JR; Liu A; Goodwin DC
    J Biol Chem; 2017 Nov; 292(45):18408-18421. PubMed ID: 28972181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methionine-393 is an axial ligand of the heme b558 component of the cytochrome bd ubiquinol oxidase from Escherichia coli.
    Kaysser TM; Ghaim JB; Georgiou C; Gennis RB
    Biochemistry; 1995 Oct; 34(41):13491-501. PubMed ID: 7577938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.