BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 10488131)

  • 21. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids.
    Hosokawa N; Hirayoshi K; Kudo H; Takechi H; Aoike A; Kawai K; Nagata K
    Mol Cell Biol; 1992 Aug; 12(8):3490-8. PubMed ID: 1321338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Arabidopsis heat shock factor is constitutively active in Drosophila and human cells.
    Hübel A; Lee JH; Wu C; Schöffl F
    Mol Gen Genet; 1995 Jul; 248(2):136-41. PubMed ID: 7651336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. HSF4 is required for normal cell growth and differentiation during mouse lens development.
    Fujimoto M; Izu H; Seki K; Fukuda K; Nishida T; Yamada S; Kato K; Yonemura S; Inouye S; Nakai A
    EMBO J; 2004 Oct; 23(21):4297-306. PubMed ID: 15483628
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A homozygous splice mutation in the HSF4 gene is associated with an autosomal recessive congenital cataract.
    Smaoui N; Beltaief O; BenHamed S; M'Rad R; Maazoul F; Ouertani A; Chaabouni H; Hejtmancik JF
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2716-21. PubMed ID: 15277496
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hsf4 counteracts Hsf1 transcription activities and increases lens epithelial cell survival in vitro.
    Cui X; Xie PP; Jia PP; Lou Q; Dun G; Li S; Liu G; Zhang J; Dong Z; Ma Y; Hu Y
    Biochim Biophys Acta; 2015 Mar; 1853(3):746-55. PubMed ID: 25601714
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional role for heat shock factors in the transcriptional regulation of human RANK ligand gene expression in stromal/osteoblast cells.
    Roccisana JL; Kawanabe N; Kajiya H; Koide M; Roodman GD; Reddy SV
    J Biol Chem; 2004 Mar; 279(11):10500-7. PubMed ID: 14699143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heat shock transcription factor activates transcription of the yeast metallothionein gene.
    Silar P; Butler G; Thiele DJ
    Mol Cell Biol; 1991 Mar; 11(3):1232-8. PubMed ID: 1996089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Kinetics of heat shock response upon disfunction of general transcription factor (HSF)].
    Funikov SIu; Garbuz DG; Zatsepina OG
    Mol Biol (Mosk); 2014; 48(2):306-13. PubMed ID: 25850300
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tissue-dependent expression of heat shock factor 2 isoforms with distinct transcriptional activities.
    Goodson ML; Park-Sarge OK; Sarge KD
    Mol Cell Biol; 1995 Oct; 15(10):5288-93. PubMed ID: 7565677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors.
    Fu S; Rogowsky P; Nover L; Scanlon MJ
    Planta; 2006 Jun; 224(1):42-52. PubMed ID: 16331466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The human LEF-1 gene contains a promoter preferentially active in lymphocytes and encodes multiple isoforms derived from alternative splicing.
    Hovanes K; Li TW; Waterman ML
    Nucleic Acids Res; 2000 May; 28(9):1994-2003. PubMed ID: 10756202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation.
    Sorger PK; Pelham HR
    Cell; 1988 Sep; 54(6):855-64. PubMed ID: 3044613
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The transcription activity of heat shock factor 4b is regulated by FGF2.
    Hu YZ; Zhang J; Li S; Wang C; Chu L; Zhang Z; Ma Z; Wang M; Jiang Q; Liu G; Qi Y; Ma Y
    Int J Biochem Cell Biol; 2013 Feb; 45(2):317-25. PubMed ID: 23200779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway.
    Nakai A; Morimoto RI
    Mol Cell Biol; 1993 Apr; 13(4):1983-97. PubMed ID: 8455593
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The yeast and mammalian Ras pathways control transcription of heat shock genes independently of heat shock transcription factor.
    Engelberg D; Zandi E; Parker CS; Karin M
    Mol Cell Biol; 1994 Jul; 14(7):4929-37. PubMed ID: 8007989
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential recognition of heat shock elements by members of the heat shock transcription factor family.
    Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H
    FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transformation of eEF1Bδ into heat-shock response transcription factor by alternative splicing.
    Kaitsuka T; Tomizawa K; Matsushita M
    EMBO Rep; 2011 Jul; 12(7):673-81. PubMed ID: 21597468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive.
    Shi Y; Kroeger PE; Morimoto RI
    Mol Cell Biol; 1995 Aug; 15(8):4309-18. PubMed ID: 7623825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Different forms of the mRNA encoding the heat-shock transcription factor are expressed during the life cycle of the parasitic helminth Schistosoma mansoni.
    Lantner F; Ziv E; Ram D; Schechter I
    Eur J Biochem; 1998 Apr; 253(2):390-8. PubMed ID: 9654088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.