These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10489281)

  • 1. Perikinetic Aggregation of Alkoxylated Silica Particles in Two Dimensions.
    Hansen PH; Bergström L
    J Colloid Interface Sci; 1999 Oct; 218(1):77-87. PubMed ID: 10489281
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orthokinetic Aggregation in Two Dimensions of Monodisperse and Bidisperse Colloidal Systems.
    Hansen PH; Malmsten M; Bergenståhl B; Bergström L
    J Colloid Interface Sci; 1999 Dec; 220(2):269-280. PubMed ID: 10607443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the salt concentration and counterion valence on the aggregation of latex particles at the air/water interface.
    Moncho-Jordá A; Martínez-López F; Hidalgo-Alvarez R
    J Colloid Interface Sci; 2002 May; 249(2):405-11. PubMed ID: 16290615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Light Scattering Study of the Transition Region between Diffusion- and Reaction-Limited Cluster Aggregation.
    Odriozola G; Tirado-Miranda M; Schmitt A; Martínez López F; Callejas-Fernández J; Martínez-García R; Hidalgo-Álvarez R
    J Colloid Interface Sci; 2001 Aug; 240(1):90-96. PubMed ID: 11446790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional colloidal aggregation: concentration effects.
    González AE; Martínez-López F; Moncho-Jordá A; Hidalgo-Alvarez R
    J Colloid Interface Sci; 2002 Feb; 246(2):227-34. PubMed ID: 16290406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of monodisperse fluorescent core-shell silica particles using a modified Stober method for imaging individual particles in dense colloidal suspensions.
    Lee MH; Beyer FL; Furst EM
    J Colloid Interface Sci; 2005 Aug; 288(1):114-23. PubMed ID: 15927569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractal Morphology and Breakage of DLCA and RLCA Aggregates.
    Tang S; Preece JM; McFarlane CM; Zhang Z
    J Colloid Interface Sci; 2000 Jan; 221(1):114-123. PubMed ID: 10623457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaling of the kinetics of slow aggregation and gel formation for a fluorinated polymer colloid.
    Sandkühler P; Sefcik J; Morbidelli M
    Langmuir; 2005 Mar; 21(5):2062-77. PubMed ID: 15723512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrorheological Response and Structure Growth of Colloidal Silica Suspensions.
    Satoh T; Ashitaka T; Orihara S; Saimoto Y; Konno M
    J Colloid Interface Sci; 2001 Feb; 234(1):19-23. PubMed ID: 11161485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer Simulation of the Aggregation and Sintering Restructuring of Fractal-like Clusters Containing Limited Numbers of Primary Particles.
    Yang G; Biswas P
    J Colloid Interface Sci; 1999 Mar; 211(1):142-150. PubMed ID: 9929446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Microporous Silica Spheres.
    Vacassy R; Flatt RJ; Hofmann H; Choi KS; Singh RK
    J Colloid Interface Sci; 2000 Jul; 227(2):302-315. PubMed ID: 10873314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical Trapping of Titania/Silica Core-Shell Colloidal Particles.
    Viravathana P; Marr DW
    J Colloid Interface Sci; 2000 Jan; 221(2):301-307. PubMed ID: 10631034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and stability of silica particle monolayers at horizontal and vertical octane-water interfaces.
    Horozov TS; Aveyard R; Binks BP; Clint JH
    Langmuir; 2005 Aug; 21(16):7405-12. PubMed ID: 16042472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further insights into the universality of colloidal aggregation.
    Sandkühler P; Lattuada M; Wu H; Sefcik J; Morbidelli M
    Adv Colloid Interface Sci; 2005 May; 113(2-3):65-83. PubMed ID: 15935139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control over colloidal aggregation in monolayers of latex particles at the oil-water interface.
    Reynaert S; Moldenaers P; Vermant J
    Langmuir; 2006 May; 22(11):4936-45. PubMed ID: 16700578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional Monte Carlo simulations of internal aggregate structures in a colloidal dispersion composed of rod-like particles with magnetic moment normal to the particle axis.
    Satoh A
    J Colloid Interface Sci; 2008 Feb; 318(1):68-81. PubMed ID: 17988678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attractive interactions between like-charged colloidal particles at the air/water interface.
    Gómez-Guzmán O; Ruiz-Garcia J
    J Colloid Interface Sci; 2005 Nov; 291(1):1-6. PubMed ID: 15978600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of surface properties of elastomer colloids on their coalescence and aggregation kinetics.
    Gauer C; Wu H; Morbidelli M
    Langmuir; 2009 Oct; 25(20):12073-83. PubMed ID: 19610664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relation between aggregation kinetics and the structure of kaolinite aggregates.
    Berka M; Rice JA
    Langmuir; 2005 Feb; 21(4):1223-9. PubMed ID: 15697264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation-fragmentation in a model of DNA-mediated colloidal assembly.
    Pierce F; Sorensen CM; Chakrabarti A
    Langmuir; 2005 Sep; 21(20):8992-9. PubMed ID: 16171321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.