These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10489298)

  • 21. Electrochemical characteristics and concentration polarization of perfluorinated cation-exchange membranes.
    Sidorova M; Ermakova L; Kiprianova A; Aleksandrov D; Timofeev S
    Adv Colloid Interface Sci; 2007 Oct; 134-135():224-35. PubMed ID: 17568551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of proton concentration on membrane potential across a weak amphoteric polymer membrane.
    Uematsu I; Jimbo T; Tanioka A
    J Colloid Interface Sci; 2002 Jan; 245(2):319-24. PubMed ID: 16290366
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions.
    Ramírez P; Gómez V; Cervera J; Schiedt B; Mafé S
    J Chem Phys; 2007 May; 126(19):194703. PubMed ID: 17523824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification of active and porous sublayers of aged polyamide/polysulfone composite membranes due to HNO3 treatment: effect of treatment time.
    Benavente J; Vázquez MI; de Lara R
    J Colloid Interface Sci; 2006 May; 297(1):226-34. PubMed ID: 16297928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theory of transport in nanofluidic channels with moderately thin electrical double layers: effect of the wall potential modulation on solutions of symmetric and asymmetric electrolytes.
    Petsev DN
    J Chem Phys; 2005 Dec; 123(24):244907. PubMed ID: 16396573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time evolution of NaCl flux through the microbial cellulose membrane with concentration polarization.
    Grzegorczyn S; Michalska-Małecka K; Slezak A
    Polim Med; 2008; 38(2):11-20. PubMed ID: 18810983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrokinetic flow-induced currents in silica nanofluidic channels.
    Choi YS; Kim SJ
    J Colloid Interface Sci; 2009 May; 333(2):672-8. PubMed ID: 19251271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic diffuse double-layer model for the electrochemistry of nanometer-sized electrodes.
    He R; Chen S; Yang F; Wu B
    J Phys Chem B; 2006 Feb; 110(7):3262-70. PubMed ID: 16494338
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model equations for voltage concentration boundary layers effect in a single polymeric membrane electrochemical cell.
    Slezak A; Slezak K; Zyska A
    Polim Med; 2004; 34(3):55-62. PubMed ID: 15631156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-dependent phenomena in the potential response of ion-selective electrodes treated by the Nernst-Planck-Poisson model. Part 2: Transmembrane processes and detection limit.
    Sokalski T; Kucza W; Danielewski M; Lewenstam A
    Anal Chem; 2009 Jun; 81(12):5016-22. PubMed ID: 19459654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane potential in multi-ionic mixtures.
    Lanteri Y; Szymczyk A; Fievet P
    J Phys Chem B; 2009 Jul; 113(27):9197-204. PubMed ID: 19518100
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model.
    Chang CC; Yang RJ
    J Colloid Interface Sci; 2009 Nov; 339(2):517-20. PubMed ID: 19712936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of ion transport in nanofiltration using phenomenological coefficients and structural characteristics.
    Bason S; Kaufman Y; Freger V
    J Phys Chem B; 2010 Mar; 114(10):3510-7. PubMed ID: 20170142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Competitive separation of di- vs. mono-valent cations in electrodialysis: effects of the boundary layer properties.
    Kim Y; Walker WS; Lawler DF
    Water Res; 2012 May; 46(7):2042-56. PubMed ID: 22336628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulation of flux during electro-membrane extraction based on the Nernst-Planck equation.
    Gjelstad A; Rasmussen KE; Pedersen-Bjergaard S
    J Chromatogr A; 2007 Dec; 1174(1-2):104-11. PubMed ID: 17850807
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrophoresis of a concentrated dispersion of spherical particles covered by an ion-penetrable membrane layer.
    Lee E; Chou KT; Hsu JP
    J Colloid Interface Sci; 2004 Dec; 280(2):518-26. PubMed ID: 15533425
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters.
    Murthy ZV; Chaudhari LB
    J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation.
    Sharma RR; Chellam S
    J Colloid Interface Sci; 2006 Jun; 298(1):327-40. PubMed ID: 16448663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical Solution of the Extended Nernst-Planck Model.
    Samson E; Marchand J
    J Colloid Interface Sci; 1999 Jul; 215(1):1-8. PubMed ID: 10362465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.