BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10489426)

  • 1. Sheep erythrocyte membrane binding and transfer of long-chain fatty acids.
    Bojesen IN; Bojesen E
    J Membr Biol; 1999 Sep; 171(2):141-9. PubMed ID: 10489426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specificities of red cell membrane sites transporting three long chain fatty acids.
    Bojesen IN; Bojesen E
    J Membr Biol; 1996 Feb; 149(3):257-67. PubMed ID: 8801357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature of the elements transporting long-chain fatty acids through the red cell membrane.
    Bojesen IN; Bojesen E
    J Membr Biol; 1998 Jun; 163(3):169-81. PubMed ID: 9625774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of long-chain native fatty acids across human erythrocyte ghost membranes.
    Kleinfeld AM; Storms S; Watts M
    Biochemistry; 1998 Jun; 37(22):8011-9. PubMed ID: 9609694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the fatty acid profiles of red blood cell membrane phospholipids in human neonates during the first month of life.
    Pita ML; De Lucchi C; Faus MJ; Gil A
    Clin Physiol Biochem; 1990; 8(2):91-100. PubMed ID: 2361356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acid-binding to erythrocyte ghost membranes and transmembrane movement.
    Bojesen IN; Bojesen E
    Mol Cell Biochem; 1990 Oct 15-Nov 8; 98(1-2):209-15. PubMed ID: 2266961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity.
    Calder PC; Yaqoob P; Harvey DJ; Watts A; Newsholme EA
    Biochem J; 1994 Jun; 300 ( Pt 2)(Pt 2):509-18. PubMed ID: 8002957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action of long-chain fatty acids in vitro on Ca2+-stimulatable, Mg2+-dependent ATPase activity in human red cell membranes.
    Davis FB; Davis PJ; Blas SD; Schoenl M
    Biochem J; 1987 Dec; 248(2):511-6. PubMed ID: 2963620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the phospholipid and fatty acid composition in normal erythrocytes from sheep of different ages. Aminophospholipid organization in the membrane bilayer.
    Marin MS; Fernandez A; Sanchez-Yagüe J; Cabezas JA; Llanillo M
    Biochimie; 1990 Oct; 72(10):745-50. PubMed ID: 2078591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different arachidonate and palmitate binding capacities of the human red cell membrane.
    Bojesen IN; Bojesen E
    J Membr Biol; 1994 Oct; 142(1):113-6. PubMed ID: 7707348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are ethane and pentane evolution and thiobarbituric acid reactivity specific for lipid peroxidation in erythrocyte membranes?
    Pitkänen OM
    Scand J Clin Lab Invest; 1992 Sep; 52(5):379-85. PubMed ID: 1514016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation of oleic acid across the erythrocyte membrane. Evidence for a fast process.
    Bröring K; Haest CW; Deuticke B
    Biochim Biophys Acta; 1989 Nov; 986(2):321-31. PubMed ID: 2590674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single photon radioluminescence. II. Signal detection and biological applications.
    Shahrokh Z; Bicknese S; Shohet SB; Verkman AS
    Biophys J; 1992 Nov; 63(5):1267-79. PubMed ID: 1477278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of phosphatidylcholine liposomes and plasma lipoproteins with sheep erythrocyte membranes. Preferential transfer of phosphatidylcholine containing unsaturated fatty acids.
    Rindlisbacher B; Zahler P
    Biochim Biophys Acta; 1983 Aug; 732(3):485-91. PubMed ID: 6871212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat, caprine, equine and bovine erythrocyte ghosts exposed to t-butyl hydroperoxide as a model to study lipid peroxidation using a chemiluminescence assay.
    Iglesias BF; Catalá A
    Res Vet Sci; 2005 Aug; 79(1):19-27. PubMed ID: 15894020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of fatty acids across the membrane of human erythrocyte ghosts.
    Morand O; Aigrot MS
    Biochim Biophys Acta; 1985 Jun; 835(1):68-76. PubMed ID: 4005276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arachidonic acid transfer across the human red cell membrane by a specific transport system.
    Bojesen IN; Bojesen E
    Acta Physiol Scand; 1995 Jun; 154(2):253-67. PubMed ID: 7572221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the uptake of fatty acids by brush border membranes of the rabbit intestine.
    Proulx P; Aubry H; Brglez I; Williamson DG
    Can J Biochem Cell Biol; 1985 Apr; 63(4):249-56. PubMed ID: 4016571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of enzymatic phospholipid cleavage on the permeability of the erythrocyte membrane: III. Discrimination between the causal role of split products and of lecithin removal.
    Deuticke B; Grunze M; Forst B; Luetkemeier P
    J Membr Biol; 1981 Mar; 59(1):45-55. PubMed ID: 7241575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of fatty acid composition in mammalian erythrocytes on cellular aggregation.
    Plasenzotti R; Windberger U; Ulberth F; Osterode W; Losert U
    Clin Hemorheol Microcirc; 2007; 37(3):237-43. PubMed ID: 17726253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.