These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 10489533)

  • 21. Laboratory and field evaluation of a SAW microsensor array for measuring perchloroethylene in breath.
    Groves WA; Achutan C
    J Occup Environ Hyg; 2004 Dec; 1(12):779-88. PubMed ID: 15742707
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Micropatterned polymeric gratings as chemoresponsive volatile organic compound sensors: implications for analyte detection and identification via diffraction-based sensor arrays.
    Bailey RC; Hupp JT
    Anal Chem; 2003 May; 75(10):2392-8. PubMed ID: 12918982
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The fractional free volume of the sorbed vapor in modeling the viscoelastic contribution to polymer-coated surface acoustic wave vapor sensor responses.
    Grate JW; Zellers ET
    Anal Chem; 2000 Jul; 72(13):2861-8. PubMed ID: 10905319
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of linear solvation energy relationships for modeling responses from polymer-coated acoustic-wave vapor sensors.
    Hierlemann A; Zellers ET; Ricco AJ
    Anal Chem; 2001 Jul; 73(14):3458-66. PubMed ID: 11476248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differentiation of chemical components in a binary solvent vapor mixture using carbon/polymer composite-based chemiresistors.
    Patel SV; Jenkins MW; Hughes RC; Yelton WG; Ricco AJ
    Anal Chem; 2000 Apr; 72(7):1532-42. PubMed ID: 10763250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors.
    Patrash SJ; Zellers ET
    Anal Chem; 1993 Aug; 65(15):2055-66. PubMed ID: 8372969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Organic vapor discrimination with chemiresistor arrays of temperature modulated tin-oxide nanowires and thiolate-monolayer-protected gold nanoparticles.
    Scholten K; Bohrer FI; Dattoli E; Lu W; Zellers ET
    Nanotechnology; 2011 Mar; 22(12):125501. PubMed ID: 21317498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An investigation of the concentration dependence and response to analyte mixtures of carbon black/insulating organic polymer composite vapor detectors.
    Severin EJ; Doleman BJ; Lewis NS
    Anal Chem; 2000 Feb; 72(4):658-68. PubMed ID: 10701248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aggregation-Induced Emission Molecule Microwire-Based Specific Organic Vapor Detector through Structural Modification.
    Jiang X; Yu Z; Ma C; Wang D; Wu Y; Shi C; Li Y; Pang J; Zhang X; Jiang L
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12501-12508. PubMed ID: 33683097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of spatiotemporal response information from sorption-based sensor arrays to identify and quantify the composition of analyte mixtures.
    Woodka MD; Brunschwig BS; Lewis NS
    Langmuir; 2007 Dec; 23(26):13232-41. PubMed ID: 18001074
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced sensitivity to and classification of volatile carboxylic acids using arrays of linear poly(ethylenimine)-carbon black composite vapor detectors.
    Tillman ES; Koscho ME; Grubbs RH; Lewis NS
    Anal Chem; 2003 Apr; 75(7):1748-53. PubMed ID: 12705612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-chemiresistor GC detector employing monolayer-protected metal nanocluster interfaces.
    Cai QY; Zellers ET
    Anal Chem; 2002 Jul; 74(14):3533-9. PubMed ID: 12139065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review.
    Afzal A; Iqbal N; Mujahid A; Schirhagl R
    Anal Chim Acta; 2013 Jul; 787():36-49. PubMed ID: 23830419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical sensor for diverse organic vapors at ppm concentration ranges.
    Thomas JC; Trend JE; Rakow NA; Wendland MS; Poirier RJ; Paolucci DM
    Sensors (Basel); 2011; 11(3):3267-80. PubMed ID: 22163798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A portable, high-speed, vacuum-outlet GC vapor analyzer employing air as carrier gas and surface acoustic wave detection.
    Whiting JJ; Lu CJ; Zellers ET; Sacks RD
    Anal Chem; 2001 Oct; 73(19):4668-75. PubMed ID: 11605845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-speed fluorescence detection of explosives-like vapors.
    Albert KJ; Walt DR
    Anal Chem; 2000 May; 72(9):1947-55. PubMed ID: 10815950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polymer coated quartz crystal microbalance sensors for detection of volatile organic compounds in gas mixtures.
    Si P; Mortensen J; Komolov A; Denborg J; Møller PJ
    Anal Chim Acta; 2007 Aug; 597(2):223-30. PubMed ID: 17683733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A method for detecting breakthrough of organic solvent vapors in a charcoal tube using semiconductor gas sensors.
    Hori H; Noritake Y; Murobushi H; Higashi T; Tanaka I
    Appl Occup Environ Hyg; 1999 Aug; 14(8):558-64. PubMed ID: 10462851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly-sensitive optical organic vapor sensor through polymeric swelling induced variation of fluorescent intensity.
    Jiang X; Gao H; Zhang X; Pang J; Li Y; Li K; Wu Y; Li S; Zhu J; Wei Y; Jiang L
    Nat Commun; 2018 Sep; 9(1):3799. PubMed ID: 30228346
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical vapor discrimination using a compact and low-power array of piezoresistive microcantilevers.
    Loui A; Ratto TV; Wilson TS; McCall SK; Mukerjee EV; Love AH; Hart BR
    Analyst; 2008 May; 133(5):608-15. PubMed ID: 18427681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.