These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10489701)

  • 1. A curved piezo-structure model: implications on active structural acoustic control.
    Henry JK; Clark RL
    J Acoust Soc Am; 1999 Sep; 106(3 Pt 1):1400-7. PubMed ID: 10489701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise transmission from a curved panel into a cylindrical enclosure: analysis of structural acoustic coupling.
    Henry JK; Clark RL
    J Acoust Soc Am; 2001 Apr; 109(4):1456-63. PubMed ID: 11325117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A synthesis approach for reproducing the response of aircraft panels to a turbulent boundary layer excitation.
    Bravo T; Maury C
    J Acoust Soc Am; 2011 Jan; 129(1):143-53. PubMed ID: 21302997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implications of using colocated strain-based transducers for output active structural acoustic control.
    Vipperman JS; Clark RL
    J Acoust Soc Am; 1999 Sep; 106(3 Pt 1):1392-9. PubMed ID: 10489700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local feedback control of light honeycomb panels.
    Hong C; Elliott SJ
    J Acoust Soc Am; 2007 Jan; 121(1):222-33. PubMed ID: 17297778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving the vibroacoustic equations of plates by minimization of error on a sample of observation points.
    Collery O; Guyader JL
    J Acoust Soc Am; 2010 Mar; 127(3):1347-56. PubMed ID: 20329834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural acoustic control of plates with variable boundary conditions: design methodology.
    Sprofera JD; Cabell RH; Gibbs GP; Clark RL
    J Acoust Soc Am; 2007 Jul; 122(1):271-9. PubMed ID: 17614487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic temperature measurement in a rocket noise field.
    Giraud JH; Gee KL; Ellsworth JE
    J Acoust Soc Am; 2010 May; 127(5):EL179-84. PubMed ID: 21117711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of structural response and fatigue endurance of aircraft flap-like box structures subjected to acoustic loading.
    Xiao Y; White RG; Aglietti GS
    J Acoust Soc Am; 2005 May; 117(5):2820-34. PubMed ID: 15957753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic intensity-based method for sound radiations in a uniform flow.
    Yu C; Zhou Z; Zhuang M
    J Acoust Soc Am; 2009 Nov; 126(5):2198-205. PubMed ID: 19894800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing a theory of aircraft noise annoyance: a structural equation analysis.
    Kroesen M; Molin EJ; van Wee B
    J Acoust Soc Am; 2008 Jun; 123(6):4250-60. PubMed ID: 18537376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimode shunt damping of piezoelectric smart panel for noise reduction.
    Kim J; Kim JH
    J Acoust Soc Am; 2004 Aug; 116(2):942-8. PubMed ID: 15376660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compressive sensing beamforming based on covariance for acoustic imaging with noisy measurements.
    Zhong S; Wei Q; Huang X
    J Acoust Soc Am; 2013 Nov; 134(5):EL445-51. PubMed ID: 24181989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similarity spectra analysis of high-performance jet aircraft noise.
    Neilsen TB; Gee KL; Wall AT; James MM
    J Acoust Soc Am; 2013 Apr; 133(4):2116-25. PubMed ID: 23556581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise duration for a single overflight.
    Makarewicz R; Wojciechowska H
    J Acoust Soc Am; 2003 Jul; 114(1):218-24. PubMed ID: 12880036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-field shock formation in noise propagation from a high-power jet aircraft.
    Gee KL; Neilsen TB; Downing JM; James MM; McKinley RL; McKinley RC; Wall AT
    J Acoust Soc Am; 2013 Feb; 133(2):EL88-93. PubMed ID: 23363199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.
    Halim D; Cheng L; Su Z
    J Acoust Soc Am; 2011 Mar; 129(3):1390-9. PubMed ID: 21428503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of a wireless, self-powered, electroacoustic liner system.
    Phipps A; Liu F; Cattafesta L; Sheplak M; Nishida T
    J Acoust Soc Am; 2009 Feb; 125(2):873-81. PubMed ID: 19206864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extension of deconvolution algorithms for the mapping of moving acoustic sources.
    Fleury V; Bulté J
    J Acoust Soc Am; 2011 Mar; 129(3):1417-28. PubMed ID: 21428506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications.
    Qing X; Li W; Wang Y; Sun H
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30696061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.