BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10490847)

  • 1. Characterization of S6K2, a novel kinase homologous to S6K1.
    Lee-Fruman KK; Kuo CJ; Lippincott J; Terada N; Blenis J
    Oncogene; 1999 Sep; 18(36):5108-14. PubMed ID: 10490847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ribosomal S6 kinase signaling and the control of translation.
    Dufner A; Thomas G
    Exp Cell Res; 1999 Nov; 253(1):100-9. PubMed ID: 10579915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel cross talk between MEK and S6K2 in FGF-2 induced proliferation of SCLC cells.
    Pardo OE; Arcaro A; Salerno G; Tetley TD; Valovka T; Gout I; Seckl MJ
    Oncogene; 2001 Nov; 20(52):7658-67. PubMed ID: 11753643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of ribosomal S6 kinase 2 shows differential regulation of its kinase activity from that of ribosomal S6 kinase 1.
    Phin S; Kupferwasser D; Lam J; Lee-Fruman KK
    Biochem J; 2003 Jul; 373(Pt 2):583-91. PubMed ID: 12713446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability.
    Beugnet A; Tee AR; Taylor PM; Proud CG
    Biochem J; 2003 Jun; 372(Pt 2):555-66. PubMed ID: 12611592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor association and tyrosine phosphorylation of S6 kinases.
    Rebholz H; Panasyuk G; Fenton T; Nemazanyy I; Valovka T; Flajolet M; Ronnstrand L; Stephens L; West A; Gout IT
    FEBS J; 2006 May; 273(9):2023-36. PubMed ID: 16640565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of ribosomal S6 kinase 2 by mammalian target of rapamycin.
    Park IH; Bachmann R; Shirazi H; Chen J
    J Biol Chem; 2002 Aug; 277(35):31423-9. PubMed ID: 12087098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy.
    Hidalgo M; Rowinsky EK
    Oncogene; 2000 Dec; 19(56):6680-6. PubMed ID: 11426655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways.
    Liu L; Li F; Cardelli JA; Martin KA; Blenis J; Huang S
    Oncogene; 2006 Nov; 25(53):7029-40. PubMed ID: 16715128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. L-leucine availability regulates phosphatidylinositol 3-kinase, p70 S6 kinase and glycogen synthase kinase-3 activity in L6 muscle cells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in the L-leucine-induced up-regulation of system A amino acid transport.
    Peyrollier K; Hajduch E; Blair AS; Hyde R; Hundal HS
    Biochem J; 2000 Sep; 350 Pt 2(Pt 2):361-8. PubMed ID: 10947949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of ribosomal S6 kinase 2 by effectors of the phosphoinositide 3-kinase pathway.
    Martin KA; Schalm SS; Richardson C; Romanelli A; Keon KL; Blenis J
    J Biol Chem; 2001 Mar; 276(11):7884-91. PubMed ID: 11108711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of the p70(s6k)/p85(s6k) gene reveals a small mouse phenotype and a new functional S6 kinase.
    Shima H; Pende M; Chen Y; Fumagalli S; Thomas G; Kozma SC
    EMBO J; 1998 Nov; 17(22):6649-59. PubMed ID: 9822608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ubiquitination of ribosomal S6 kinases is independent from the mitogen-induced phosphorylation/activation of the kinase.
    Gwalter J; Wang ML; Gout I
    Int J Biochem Cell Biol; 2009 Apr; 41(4):828-33. PubMed ID: 18786649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5'-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway.
    Pende M; Um SH; Mieulet V; Sticker M; Goss VL; Mestan J; Mueller M; Fumagalli S; Kozma SC; Thomas G
    Mol Cell Biol; 2004 Apr; 24(8):3112-24. PubMed ID: 15060135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosomal S6 kinase 2 inhibition by a potent C-terminal repressor domain is relieved by mitogen-activated protein-extracellular signal-regulated kinase kinase-regulated phosphorylation.
    Martin KA; Schalm SS; Romanelli A; Keon KL; Blenis J
    J Biol Chem; 2001 Mar; 276(11):7892-8. PubMed ID: 11108720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Features of fibronectin-dependent activation of ribosomal protein S6 kinase (S6K1 and S6K2)].
    Val'ovka TI; Filonenko VV; Velykyï MM; Drobot LB; Voterfill M; Matsuka HKh; Hut IT
    Ukr Biokhim Zh (1999); 2000; 72(3):31-7. PubMed ID: 11200472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals.
    Mahfouz MM; Kim S; Delauney AJ; Verma DP
    Plant Cell; 2006 Feb; 18(2):477-90. PubMed ID: 16377759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the general transcription factor Yin Yang 1 as a novel and specific binding partner for S6 kinase 2.
    Ismail HM; Myronova O; Tsuchiya Y; Niewiarowski A; Tsaneva I; Gout I
    Cell Signal; 2013 May; 25(5):1054-63. PubMed ID: 23403125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mTOR signaling pathway mediates control of ribosomal protein mRNA translation in rat liver.
    Reiter AK; Anthony TG; Anthony JC; Jefferson LS; Kimball SR
    Int J Biochem Cell Biol; 2004 Nov; 36(11):2169-79. PubMed ID: 15313464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemical analysis of S6K1 and S6K2 expression in endometrial adenocarcinomas.
    Lyzogubov VV; Lytvyn DI; Dudchenko TM; Lubchenko NV; Pogrybniy PV; Nespryadko SV; Vinnitska AB; Usenko VS; Gout IT; Filonenko VV
    Exp Oncol; 2004 Dec; 26(4):287-93. PubMed ID: 15627061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.