These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10490935)

  • 1. Can Hebbian volume learning explain discontinuities in cortical maps?
    Mitchison GJ; Swindale NV
    Neural Comput; 1999 Oct; 11(7):1519-26. PubMed ID: 10490935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous constraints on pre- and post-synaptic cells couple cortical feature maps in a 2D geometric model of orientation preference.
    Thomas PJ; Cowan JD
    Math Med Biol; 2006 Jun; 23(2):119-38. PubMed ID: 16627538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of intracortical competition on the formation of topographic maps in models of Hebbian learning.
    Piepenbrock C; Obermayer K
    Biol Cybern; 2000 Apr; 82(4):345-53. PubMed ID: 10804066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural pattern formation via a competitive Hebbian mechanism.
    Obermayer K; Sejnowski T; Blasdel GG
    Behav Brain Res; 1995 Jan; 66(1-2):161-7. PubMed ID: 7755886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organizing maps for visual feature representation based on natural binocular stimuli.
    Wiemer J; Burwick T; von Seelen W
    Biol Cybern; 2000 Feb; 82(2):97-110. PubMed ID: 10664097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometry of orientation and ocular dominance columns in monkey striate cortex.
    Obermayer K; Blasdel GG
    J Neurosci; 1993 Oct; 13(10):4114-29. PubMed ID: 8410181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relation between retinotopical and orientation maps in visual cortex.
    Ernst U; Pawelzik K; Tsodyks M; Sejnowski TJ
    Neural Comput; 1999 Feb; 11(2):375-9. PubMed ID: 9950736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for the development of simple cell receptive fields and the ordered arrangement of orientation columns through activity-dependent competition between ON- and OFF-center inputs.
    Miller KD
    J Neurosci; 1994 Jan; 14(1):409-41. PubMed ID: 8283248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The temporal-spatial dynamics of feature maps during monocular deprivation revealed by chronic imaging and self-organization model simulation.
    Tong L; Xie Y; Yu H
    Neuroscience; 2016 Dec; 339():571-586. PubMed ID: 27746342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of lateral interactions in V1 to organization of response properties.
    Wright JJ; Alexander DM; Bourke PD
    Vision Res; 2006 Sep; 46(17):2703-20. PubMed ID: 16600322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self organized mapping of data clusters to neuron groups.
    Müller D
    Neural Netw; 2009 May; 22(4):415-24. PubMed ID: 19103474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hebbian learning of recurrent connections: a geometrical perspective.
    Galtier MN; Faugeras OD; Bressloff PC
    Neural Comput; 2012 Sep; 24(9):2346-83. PubMed ID: 22594830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized spin models for coupled cortical feature maps obtained by coarse graining correlation based synaptic learning rules.
    Thomas PJ; Cowan JD
    J Math Biol; 2012 Dec; 65(6-7):1149-86. PubMed ID: 22101498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reward-modulated Hebbian learning of decision making.
    Pfeiffer M; Nessler B; Douglas RJ; Maass W
    Neural Comput; 2010 Jun; 22(6):1399-444. PubMed ID: 20141476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of lateral connections on the structure of cortical maps.
    Carreira-Perpiñán MA; Goodhill GJ
    J Neurophysiol; 2004 Nov; 92(5):2947-59. PubMed ID: 15190092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory for the alignment of cortical feature maps during development.
    Bressloff PC; Oster AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021920. PubMed ID: 20866850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Long-Range Disynaptic Inhibition Explains the Formation of Cortical Orientation Maps.
    Antolík J
    Front Neural Circuits; 2017; 11():21. PubMed ID: 28408869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An incremental Hebbian learning model of the primary visual cortex with lateral plasticity and real input patterns.
    Burger T; Lang EW
    Z Naturforsch C J Biosci; 1999; 54(1-2):128-40. PubMed ID: 10097413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex.
    Wardle SG; Ritchie JB; Seymour K; Carlson TA
    J Neurosci; 2017 Feb; 37(5):1187-1196. PubMed ID: 28003346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How different feature spaces may be represented in cortical maps.
    Swindale NV
    Network; 2004 Nov; 15(4):217-42. PubMed ID: 15600232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.