These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Oxidative stress in Staphylococcus aureus associated to the cleavage of an isoxazolylnaphthoquinoneimine with antibacterial capacity. Bogdanov PM; Bertorello MM; Albesa I Biochem Biophys Res Commun; 1998 Mar; 244(2):561-6. PubMed ID: 9514859 [TBL] [Abstract][Full Text] [Related]
4. Stability determination of 3-bromo-2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)- 1,4-naphthoquinon-4-imine in ethanol by first-derivative spectrophotometry. Dabbene VG; Briñón MC; de Bertorello MM J Pharm Sci; 1994 Nov; 83(11):1617-21. PubMed ID: 7891284 [TBL] [Abstract][Full Text] [Related]
5. Effects of hydroxypropyl-beta-cyclodextrin on the chemical stability of a naphthoquinone in aqueous solutions. Linares MS; Longhi MR Pharmazie; 2003 Jan; 58(1):32-7. PubMed ID: 12622250 [TBL] [Abstract][Full Text] [Related]
6. An "in vitro" system simulates in membranes the antibacterial mechanism postulated for the action of isoxazolylnaphtoquinoneimine in Staphylococcus aureus. Bogdanov P; Gonzalez M; Sperandeo NR; Fidelio G; Albesa I Biochem Biophys Res Commun; 1997 Oct; 239(1):186-90. PubMed ID: 9345293 [TBL] [Abstract][Full Text] [Related]
7. Isoxazoles. 8. Preformulation studies of an isoxazolylnaphthoquinone derivative. Longhi MR; de Bertorello MM; Granero GE J Pharm Sci; 1994 Mar; 83(3):336-8. PubMed ID: 8207677 [TBL] [Abstract][Full Text] [Related]
8. Biaryl isoxazolinone antibacterial agents. Quesnelle CA; Gill P; Roy S; Dodier M; Marinier A; Martel A; Snyder LB; D'Andrea SV; Bronson JJ; Frosco M; Beaulieu D; Warr GA; Denbleyker KL; Stickle TM; Yang H; Chaniewski SE; Ferraro CA; Taylor D; Russell JW; Santone KS; Clarke J; Drain RL; Knipe JO; Mosure K; Barrett JF Bioorg Med Chem Lett; 2005 Jun; 15(11):2728-33. PubMed ID: 15869878 [TBL] [Abstract][Full Text] [Related]
9. Isoxazoles. VII: Hydrolysis of 4-methyl-5-isoxazolylnaphthoquinone derivatives in aqueous solutions. Longhi MR; de Bertorello MM; Briñón MC J Pharm Sci; 1991 Jun; 80(6):573-7. PubMed ID: 1941551 [TBL] [Abstract][Full Text] [Related]
10. Antibacterial activity of guava (Psidium guajava L.) and Neem (Azadirachta indica A. Juss.) extracts against foodborne pathogens and spoilage bacteria. Mahfuzul Hoque MD; Bari ML; Inatsu Y; Juneja VK; Kawamoto S Foodborne Pathog Dis; 2007; 4(4):481-8. PubMed ID: 18041957 [TBL] [Abstract][Full Text] [Related]
11. Identification of phenylisoxazolines as novel and viable antibacterial agents active against Gram-positive pathogens. Barbachyn MR; Cleek GJ; Dolak LA; Garmon SA; Morris J; Seest EP; Thomas RC; Toops DS; Watt W; Wishka DG; Ford CW; Zurenko GE; Hamel JC; Schaadt RD; Stapert D; Yagi BH; Adams WJ; Friis JM; Slatter JG; Sams JP; Oien NL; Zaya MJ; Wienkers LC; Wynalda MA J Med Chem; 2003 Jan; 46(2):284-302. PubMed ID: 12519066 [TBL] [Abstract][Full Text] [Related]
12. Antibacterial effect of 2-hydroxy-N-(3,4-dimethyl-5-isoxazolyl)-1, 4-naphthoquinone-4-imine on Staphylococcus aureus. Bogdanov P; Albesa I; Sperandeo NR; Luna C; de Bertorello MM Experientia; 1996 Jun; 52(6):600-4. PubMed ID: 8698097 [TBL] [Abstract][Full Text] [Related]
13. Restoration of antibacterial activity of beta-lactams by epigallocatechin gallate against beta-lactamase-producing species depending on location of beta-lactamase. Zhao WH; Asano N; Hu ZQ; Shimamura T J Pharm Pharmacol; 2003 Jun; 55(6):735-40. PubMed ID: 12841932 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and antibacterial activity of bis-[2-hydroxy-3-(1,7,8,9,10-pentamethyl-3,5-dioxo-4-aza-tricyclo[5.2.1.0(2,6)]dec-8-en-4-yloxy)-propyl]-dimethyl-ammonium chloride. Struga M; Kossakowski J; Stefańska J; Zimniak A; Koziol AE Eur J Med Chem; 2008 Jun; 43(6):1309-14. PubMed ID: 17950957 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and biological evaluation of novel (L)-alpha-amino acid methyl ester, heteroalkyl, and aryl substituted 1,4-naphthoquinone derivatives as antifungal and antibacterial agents. Tandon VK; Yadav DB; Singh RV; Chaturvedi AK; Shukla PK Bioorg Med Chem Lett; 2005 Dec; 15(23):5324-8. PubMed ID: 16202590 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial activity of a novel series of 3-bromo-4-(1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione derivatives--an extended structure-activity relationship study. Mahboobi S; Eichhorn E; Winkler M; Sellmer A; Möllmann U Eur J Med Chem; 2008 Mar; 43(3):633-56. PubMed ID: 17624634 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and structure-antibacterial activity relationship investigation of isomeric 2,3,5-substituted perhydropyrrolo[3,4-d]isoxazole-4,6-diones. Agirbas H; Guner S; Budak F; Keceli S; Kandemirli F; Shvets N; Kovalishyn V; Dimoglo A Bioorg Med Chem; 2007 Mar; 15(6):2322-33. PubMed ID: 17276071 [TBL] [Abstract][Full Text] [Related]
18. Stability and antibacterial potency of ceftazidime and vancomycin eyedrops reconstituted in BSS against Pseudomonas aeruginosa and Staphylococcus aureus. Karampatakis V; Papanikolaou T; Giannousis M; Goulas A; Mandraveli K; Kilmpasani M; Alexiou-Daniel S; Mirtsou-Fidani V Acta Ophthalmol; 2009 Aug; 87(5):555-8. PubMed ID: 18700884 [TBL] [Abstract][Full Text] [Related]
19. Novel cephalosporin derivatives possessing a substituted cinnamoyl moiety at the 7 beta-position. Synthesis, structural characterization and antibacterial activity of 3-acetoxymethyl cephalosporin derivatives. López MA; Rodríguez Z; González M; Tolón B; Avila R; González I; Garmendía L; Mamposo T; Carrasco R; Pellón R; Vélez H; Fini A Eur J Med Chem; 2004 Aug; 39(8):657-64. PubMed ID: 15276299 [TBL] [Abstract][Full Text] [Related]
20. Hybrid molecules between benzenesulfonamides and active antimicrobial benzo[d]isothiazol-3-ones. Zani F; Incerti M; Ferretti R; Vicini P Eur J Med Chem; 2009 Jun; 44(6):2741-7. PubMed ID: 18775586 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]