BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 10491391)

  • 41. Kidins220/ARMS is transported by a kinesin-1-based mechanism likely to be involved in neuronal differentiation.
    Bracale A; Cesca F; Neubrand VE; Newsome TP; Way M; Schiavo G
    Mol Biol Cell; 2007 Jan; 18(1):142-52. PubMed ID: 17079733
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Unique Role for Endothelial Cell Kinesin Light Chain 1, Variant 1 in Leukocyte Transendothelial Migration.
    Cyrus BF; Muller WA
    Am J Pathol; 2016 May; 186(5):1375-86. PubMed ID: 26994343
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Axonal transport deficit in a KIF5A( -/- ) mouse model.
    Karle KN; Möckel D; Reid E; Schöls L
    Neurogenetics; 2012 May; 13(2):169-79. PubMed ID: 22466687
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Kinesin-1 structural organization and conformational changes revealed by FRET stoichiometry in live cells.
    Cai D; Hoppe AD; Swanson JA; Verhey KJ
    J Cell Biol; 2007 Jan; 176(1):51-63. PubMed ID: 17200416
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dissect Kif5b in nuclear positioning during myogenesis: the light chain binding domain and the autoinhibitory peptide are both indispensable.
    Wang Z; Xue W; Li X; Lin R; Cui J; Huang JD
    Biochem Biophys Res Commun; 2013 Mar; 432(2):242-7. PubMed ID: 23402760
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vaccinia virus proteins A36 and F12/E2 show strong preferences for different kinesin light chain isoforms.
    Gao WND; Carpentier DCJ; Ewles HA; Lee SA; Smith GL
    Traffic; 2017 Aug; 18(8):505-518. PubMed ID: 28485852
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistic autoinhibition and activation mechanisms control kinesin-1 motor activity.
    Chiba K; Ori-McKenney KM; Niwa S; McKenney RJ
    Cell Rep; 2022 May; 39(9):110900. PubMed ID: 35649356
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Beta-dystrobrevin interacts directly with kinesin heavy chain in brain.
    Macioce P; Gambara G; Bernassola M; Gaddini L; Torreri P; Macchia G; Ramoni C; Ceccarini M; Petrucci TC
    J Cell Sci; 2003 Dec; 116(Pt 23):4847-56. PubMed ID: 14600269
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The ribosome receptor, p180, interacts with kinesin heavy chain, KIF5B.
    Diefenbach RJ; Diefenbach E; Douglas MW; Cunningham AL
    Biochem Biophys Res Commun; 2004 Jul; 319(3):987-92. PubMed ID: 15184079
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain.
    Sanger A; Yip YY; Randall TS; Pernigo S; Steiner RA; Dodding MP
    J Cell Sci; 2017 May; 130(9):1637-1651. PubMed ID: 28302907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Generation of recombinant and chickenized scFv versions of an anti-kinesin monoclonal antibody H2.
    Niwa S; Chiba K
    Cytoskeleton (Hoboken); 2023; 80(9-10):356-366. PubMed ID: 37036074
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain.
    Diefenbach RJ; Mackay JP; Armati PJ; Cunningham AL
    Biochemistry; 1998 Nov; 37(47):16663-70. PubMed ID: 9843434
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cell-wide analysis of secretory granule dynamics in three dimensions in living pancreatic beta-cells: evidence against a role for AMPK-dependent phosphorylation of KLC1 at Ser517/Ser520 in glucose-stimulated insulin granule movement.
    McDonald A; Fogarty S; Leclerc I; Hill EV; Hardie DG; Rutter GA
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):205-8. PubMed ID: 20074060
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Point mutation of adenosine triphosphate-binding motif generated rigor kinesin that selectively blocks anterograde lysosome membrane transport.
    Nakata T; Hirokawa N
    J Cell Biol; 1995 Nov; 131(4):1039-53. PubMed ID: 7490281
    [TBL] [Abstract][Full Text] [Related]  

  • 55. UNC-83 is a nuclear-specific cargo adaptor for kinesin-1-mediated nuclear migration.
    Meyerzon M; Fridolfsson HN; Ly N; McNally FJ; Starr DA
    Development; 2009 Aug; 136(16):2725-33. PubMed ID: 19605495
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinesin-1 tail autoregulation and microtubule-binding regions function in saltatory transport but not ooplasmic streaming.
    Moua P; Fullerton D; Serbus LR; Warrior R; Saxton WM
    Development; 2011 Mar; 138(6):1087-92. PubMed ID: 21307100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of the binding mode of JNK-interacting protein 1 (JIP1) to kinesin-light chain 1 (KLC1).
    Nguyen TQ; Aumont-Nicaise M; Andreani J; Velours C; Chenon M; Vilela F; Geneste C; Varela PF; Llinas P; Ménétrey J
    J Biol Chem; 2018 Sep; 293(36):13946-13960. PubMed ID: 30026235
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Control of insulin granule dynamics by AMPK dependent KLC1 phosphorylation.
    McDonald A; Fogarty S; Leclerc I; Hill EV; Hardie DG; Rutter GA
    Islets; 2009; 1(3):198-209. PubMed ID: 21099273
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wolbachia and host germline components compete for kinesin-mediated transport to the posterior pole of the Drosophila oocyte.
    Russell SL; Lemseffer N; White PM; Sullivan WT
    PLoS Pathog; 2018 Aug; 14(8):e1007216. PubMed ID: 30110391
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila.
    Hurd DD; Saxton WM
    Genetics; 1996 Nov; 144(3):1075-85. PubMed ID: 8913751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.