These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10492009)

  • 41. Altered synapse formation in the adult somatosensory cortex of brain-derived neurotrophic factor heterozygote mice.
    Genoud C; Knott GW; Sakata K; Lu B; Welker E
    J Neurosci; 2004 Mar; 24(10):2394-400. PubMed ID: 15014114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BDNF accelerates gene expression in cultured cerebellar granule neurons.
    Lin X; Cui H; Bulleit RF
    Brain Res Dev Brain Res; 1998 Feb; 105(2):277-86. PubMed ID: 9541745
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CDKL5 knockout leads to altered inhibitory transmission in the cerebellum of adult mice.
    Sivilia S; Mangano C; Beggiato S; Giuliani A; Torricella R; Baldassarro VA; Fernandez M; Lorenzini L; Giardino L; Borelli AC; Ferraro L; Calzà L
    Genes Brain Behav; 2016 Jun; 15(5):491-502. PubMed ID: 27108663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Abnormal cerebellar development and foliation in BDNF-/- mice reveals a role for neurotrophins in CNS patterning.
    Schwartz PM; Borghesani PR; Levy RL; Pomeroy SL; Segal RA
    Neuron; 1997 Aug; 19(2):269-81. PubMed ID: 9292718
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.
    Bao S; Chen L; Qiao X; Knusel B; Thompson RF
    Learn Mem; 1998; 5(4-5):355-64. PubMed ID: 10454360
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A transgenic mouse model engineered to investigate human brain-derived neurotrophic factor in vivo.
    Guillemot F; Cerutti I; Auffray C; Devignes MD
    Transgenic Res; 2007 Apr; 16(2):223-37. PubMed ID: 17225071
    [TBL] [Abstract][Full Text] [Related]  

  • 47. BDNF stimulates migration of cerebellar granule cells.
    Borghesani PR; Peyrin JM; Klein R; Rubin J; Carter AR; Schwartz PM; Luster A; Corfas G; Segal RA
    Development; 2002 Mar; 129(6):1435-42. PubMed ID: 11880352
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits.
    Bonasera SJ; Arikkath J; Boska MD; Chaudoin TR; DeKorver NW; Goulding EH; Hoke TA; Mojtahedzedah V; Reyelts CD; Sajja B; Schenk AK; Tecott LH; Volden TA
    Aging (Albany NY); 2016 Sep; 8(9):2153-2181. PubMed ID: 27689748
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nonneuronal cells regulate synapse formation in the vestibular sensory epithelium via erbB-dependent BDNF expression.
    Gómez-Casati ME; Murtie JC; Rio C; Stankovic K; Liberman MC; Corfas G
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):17005-10. PubMed ID: 20837532
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [(3)H]GABA binding in the cerebellum of the reeler murine mutant.
    Matsokis N; Valcana T
    Neurochem Int; 1985; 7(1):37-44. PubMed ID: 20492896
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Utilizing In Vivo Postnatal Electroporation to Study Cerebellar Granule Neuron Morphology and Synapse Development.
    Chan U; Gautam D; West AE
    J Vis Exp; 2021 Jun; (172):. PubMed ID: 34180898
    [TBL] [Abstract][Full Text] [Related]  

  • 52. BDNF preferentially targets membrane properties of rhythmically active neurons in the pre-Bötzinger complex in neonatal mice.
    Thoby-Brisson M; Autran S; Fortin G; Champagnat J
    Adv Exp Med Biol; 2004; 551():115-20. PubMed ID: 15602952
    [No Abstract]   [Full Text] [Related]  

  • 53. Exercise Reduces H3K9me3 and Regulates Brain Derived Neurotrophic Factor and GABRA2 in an Age Dependent Manner.
    Ionescu-Tucker A; Butler CW; Berchtold NC; Matheos DP; Wood MA; Cotman CW
    Front Aging Neurosci; 2021; 13():798297. PubMed ID: 34970138
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Building better brains: the pleiotropic function of neurotrophic factors in postnatal cerebellar development.
    Boxy P; Nykjær A; Kisiswa L
    Front Mol Neurosci; 2023; 16():1181397. PubMed ID: 37251644
    [TBL] [Abstract][Full Text] [Related]  

  • 55. BDNF Overexpression Enhances the Preconditioning Effect of Brief Episodes of Hypoxia, Promoting Survival of GABAergic Neurons.
    Turovskaya MV; Gaidin SG; Vedunova MV; Babaev AA; Turovsky EA
    Neurosci Bull; 2020 Jul; 36(7):733-760. PubMed ID: 32219700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Emerging connections between cerebellar development, behaviour and complex brain disorders.
    Sathyanesan A; Zhou J; Scafidi J; Heck DH; Sillitoe RV; Gallo V
    Nat Rev Neurosci; 2019 May; 20(5):298-313. PubMed ID: 30923348
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peroxisome biogenesis deficiency attenuates the BDNF-TrkB pathway-mediated development of the cerebellum.
    Abe Y; Honsho M; Itoh R; Kawaguchi R; Fujitani M; Fujiwara K; Hirokane M; Matsuzaki T; Nakayama K; Ohgi R; Marutani T; Nakayama KI; Yamashita T; Fujiki Y
    Life Sci Alliance; 2018 Dec; 1(6):e201800062. PubMed ID: 30519675
    [TBL] [Abstract][Full Text] [Related]  

  • 58. BDNF activates an NFI-dependent neurodevelopmental timing program by sequestering NFATc4.
    Ding B; Dobner PR; Mullikin-Kilpatrick D; Wang W; Zhu H; Chow CW; Cave JW; Gronostajski RM; Kilpatrick DL
    Mol Biol Cell; 2018 Apr; 29(8):975-987. PubMed ID: 29467254
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of GABAergic synapse development by postsynaptic membrane proteins.
    Lu W; Bromley-Coolidge S; Li J
    Brain Res Bull; 2017 Mar; 129():30-42. PubMed ID: 27453545
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.