These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10493074)

  • 1. A method to improve the estimation of conduction velocity distributions over a short segment of nerve.
    Wells MD; Gozani SN
    IEEE Trans Biomed Eng; 1999 Sep; 46(9):1107-20. PubMed ID: 10493074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of the conduction velocity distribution of human sensory nerve fibers.
    Morita G; Tu YX; Okajima Y; Honda S; Tomita Y
    J Electromyogr Kinesiol; 2002 Feb; 12(1):37-43. PubMed ID: 11804810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for characterization of peripheral nerve fiber size distributions by group delay.
    Szlavik RB
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2836-40. PubMed ID: 19126466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of the Two-CAP Method for Conduction Velocity Distribution Estimation in Multi-Channel Recordings.
    Ribeiro M; Wozniak K; Andreis FR; Dos Santos Nielsen TGN; Metcalfe B
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4109-4114. PubMed ID: 36086559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental validation of the nerve conduction velocity selective recording technique using a multi-contact cuff electrode.
    Yoshida K; Kurstjens GA; Hennings K
    Med Eng Phys; 2009 Dec; 31(10):1261-70. PubMed ID: 19762269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the conduction velocity distribution of peripheral nerve trunks.
    Tu Y; Honda S; Tomita Y
    Front Med Biol Eng; 1999; 9(3):189-97. PubMed ID: 10612559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of motor unit conduction velocity from surface EMG recordings by signal-based selection of the spatial filters.
    Mesin L; Tizzani F; Farina D
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1963-71. PubMed ID: 17019860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel method for characterization of peripheral nerve fiber size distributions by group delay measurements and simulated annealing optimization.
    Szlavik RB; Turner GE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5008-14. PubMed ID: 19163842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface electrode size on computer simulated surface motor unit potentials.
    Ferdjallah M; Wertsch JJ; Harris GF
    Electromyogr Clin Neurophysiol; 1999; 39(5):259-65. PubMed ID: 10421996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of the linear model for the nerve compound action potential on the single fibre action potential waveform.
    Contento G; Barbina V; Malisan MR; Padovani R; Budai R; Pittaro I
    Clin Phys Physiol Meas; 1983 Nov; 4(4):417-33. PubMed ID: 6653045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronically implanted epineural electrodes for repeated assessment of nerve conduction velocity and compound action potential amplitude in rodents.
    Murphy B; Krieger C; Hoffer JA
    J Neurosci Methods; 2004 Jan; 132(1):25-33. PubMed ID: 14687672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A device for emulating cuff recordings of action potentials propagating along peripheral nerves.
    Rieger R; Schuettler M; Chuang SC
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):937-45. PubMed ID: 24760928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of interelectrode distance on bipolar recording of sensory nerve action potential. A mathematical study.
    Olivan Palacios J; Abad Alegria F; Sierra Posso S
    Electromyogr Clin Neurophysiol; 1993 Mar; 33(2):73-8. PubMed ID: 8449171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waveform analysis of compound nerve action potentials: a computer simulation.
    Okajima Y; Chino N; Tsubahara A; Kimura A
    Arch Phys Med Rehabil; 1994 Sep; 75(9):960-4. PubMed ID: 8085930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nerve conduction velocity distributions: a method for estimation based upon two compound action potentials.
    Cummins KL; Dorfman LJ; Perkel DH
    Prog Clin Biol Res; 1981; 52():181-231. PubMed ID: 6262837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-invasive determination of the distribution of the conduction velocity of the large-diameter fibers in peripheral nerves. Estimate based upon a single recording of the stimulus response of the nerve.
    Pollak VA; Ferbert A; Cui J; Schulze-Clewing J
    Med Prog Technol; 1992-1993; 18(4):217-25. PubMed ID: 1339944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of nerve conduction velocity distribution methods by cold exposure and ischemia.
    Savaş K; Uysal H; Yaraş N
    Int J Neurosci; 2022 Jan; 132(1):13-22. PubMed ID: 32672478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deconvolution estimation of nerve conduction velocity distribution.
    González-Cueto JA; Parker PA
    IEEE Trans Biomed Eng; 2002 Feb; 49(2):140-51. PubMed ID: 12066881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for compound action potentials and currents in a nerve bundle. I: The forward calculation.
    Wijesinghe RS; Gielen FL; Wikswo JP
    Ann Biomed Eng; 1991; 19(1):43-72. PubMed ID: 2035910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Velocity Selective Neural Signal Recording Using a Space-Time Electrode Array.
    Karimi F; Seydnejad SR
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):837-48. PubMed ID: 25532069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.