BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 10493506)

  • 1. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C.
    Agus DB; Vera JC; Golde DW
    Cancer Res; 1999 Sep; 59(18):4555-8. PubMed ID: 10493506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells.
    Spielholz C; Golde DW; Houghton AN; Nualart F; Vera JC
    Cancer Res; 1997 Jun; 57(12):2529-37. PubMed ID: 9192836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system.
    Astuya A; Caprile T; Castro M; Salazar K; García Mde L; Reinicke K; Rodríguez F; Vera JC; Millán C; Ulloa V; Low M; Martínez F; Nualart F
    J Neurosci Res; 2005 Jan 1-15; 79(1-2):146-56. PubMed ID: 15578707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid.
    Vera JC; Rivas CI; Fischbarg J; Golde DW
    Nature; 1993 Jul; 364(6432):79-82. PubMed ID: 8316303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular vitamin C accumulation in the presence of copper.
    Kuo SM; Tan D; Boyer JC
    Biol Trace Elem Res; 2004 Aug; 100(2):125-36. PubMed ID: 15326362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human choroid plexus papilloma cells efficiently transport glucose and vitamin C.
    Ulloa V; García-Robles M; Martínez F; Salazar K; Reinicke K; Pérez F; Godoy DF; Godoy AS; Nualart F
    J Neurochem; 2013 Nov; 127(3):403-14. PubMed ID: 23647458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin C enters mouse T cells as dehydroascorbic acid in vitro and does not recapitulate in vivo vitamin C effects.
    Maeng HG; Lim H; Jeong YJ; Woo A; Kang JS; Lee WJ; Hwang YI
    Immunobiology; 2009; 214(4):311-20. PubMed ID: 19327547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vitamin C enters mitochondria via facilitative glucose transporter 1 (Glut1) and confers mitochondrial protection against oxidative injury.
    KC S; Cárcamo JM; Golde DW
    FASEB J; 2005 Oct; 19(12):1657-67. PubMed ID: 16195374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of respiratory burst and uptake of dehydroascorbic acid in differentiated HL-60 cells.
    Laggner H; Goldenberg H
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):195-200. PubMed ID: 10620494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct mechanisms of transport of ascorbic acid and dehydroascorbic acid in intestinal epithelial cells (IEC-6).
    Fujita I; Akagi Y; Hirano J; Nakanishi T; Itoh N; Muto N; Tanaka K
    Res Commun Mol Pathol Pharmacol; 2000; 107(3-4):219-31. PubMed ID: 11484876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efflux of hepatic ascorbate: a potential contributor to the maintenance of plasma vitamin C.
    Upston JM; Karjalainen A; Bygrave FL; Stocker R
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):49-56. PubMed ID: 10432299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid.
    Vera JC; Rivas CI; Zhang RH; Farber CM; Golde DW
    Blood; 1994 Sep; 84(5):1628-34. PubMed ID: 8068952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehydroascorbic acid uptake and intracellular ascorbic acid accumulation in cultured Müller glial cells (TR-MUL).
    Hosoya K; Nakamura G; Akanuma S; Tomi M; Tachikawa M
    Neurochem Int; 2008 Jun; 52(7):1351-7. PubMed ID: 18353508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters.
    Agus DB; Gambhir SS; Pardridge WM; Spielholz C; Baselga J; Vera JC; Golde DW
    J Clin Invest; 1997 Dec; 100(11):2842-8. PubMed ID: 9389750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A family of mammalian Na+-dependent L-ascorbic acid transporters.
    Tsukaguchi H; Tokui T; Mackenzie B; Berger UV; Chen XZ; Wang Y; Brubaker RF; Hediger MA
    Nature; 1999 May; 399(6731):70-5. PubMed ID: 10331392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of oxidative stress in ascorbate-induced proapoptotic death of PC12 cells.
    Song JH; Shin SH; Wang W; Ross GM
    Exp Neurol; 2001 Jun; 169(2):425-37. PubMed ID: 11358456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential effects and transport kinetics of ascorbate derivatives in leukemic cell lines.
    Koh WS; Lee SJ; Lee H; Park C; Park MH; Kim WS; Yoon SS; Park K; Hong SI; Chung MH; Park CH
    Anticancer Res; 1998; 18(4A):2487-93. PubMed ID: 9703897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies with low micromolar levels of ascorbic and dehydroascorbic acid fail to unravel a preferential route for vitamin C uptake and accumulation in U937 cells.
    Azzolini C; Fiorani M; Guidarelli A; Cantoni O
    Br J Nutr; 2012 Mar; 107(5):691-6. PubMed ID: 21794197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways.
    Corpe CP; Lee JH; Kwon O; Eck P; Narayanan J; Kirk KL; Levine M
    J Biol Chem; 2005 Feb; 280(7):5211-20. PubMed ID: 15590689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colony-stimulating factors signal for increased transport of vitamin C in human host defense cells.
    Vera JC; Rivas CI; Zhang RH; Golde DW
    Blood; 1998 Apr; 91(7):2536-46. PubMed ID: 9516155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.