BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10493586)

  • 1. Role of the prosequence of guanylin.
    Schulz A; Marx UC; Hidaka Y; Shimonishi Y; Rösch P; Forssmann WG; Adermann K
    Protein Sci; 1999 Sep; 8(9):1850-9. PubMed ID: 10493586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of disulfide bonds for the structure and folding of proguanylin.
    Lauber T; Schulz A; Rösch P; Marx UC
    Biochemistry; 2004 Aug; 43(31):10050-7. PubMed ID: 15287732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro disulfide-coupled folding of guanylyl cyclase-activating peptide and its precursor protein.
    Hidaka Y; Ohno M; Hemmasi B; Hill O; Forssmann WG; Shimonishi Y
    Biochemistry; 1998 Jun; 37(23):8498-507. PubMed ID: 9622502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of human proguanylin: the role of a hormone prosequence.
    Lauber T; Neudecker P; Rösch P; Marx UC
    J Biol Chem; 2003 Jun; 278(26):24118-24. PubMed ID: 12707255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulated, side-directed secretion of proguanylin from isolated rat colonic mucosa.
    Martin S; Adermann K; Forssmann WG; Kuhn M
    Endocrinology; 1999 Nov; 140(11):5022-9. PubMed ID: 10537127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native and recombinant proguanylin feature identical biophysical properties and are monomeric in solution.
    Lauber T; Nourse A; Schulz A; Marx UC
    Biochemistry; 2002 Dec; 41(49):14602-12. PubMed ID: 12463760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prosequence-mediated disulfide coupled folding of the peptide hormones guanylin and uroguanylin.
    Lauber T; Marx UC
    Protein Pept Lett; 2005 Feb; 12(2):153-8. PubMed ID: 15723641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Side chain contributions to the interconversion of the topological isomers of guanylin-like peptides.
    Schulz A; Marx UC; Tidten N; Lauber T; Hidaka Y; Adermann K
    J Pept Sci; 2005 Jun; 11(6):319-30. PubMed ID: 15635659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Processing and characterization of human proguanylin expressed in Escherichia coli.
    Garcia KC; de Sauvage FJ; Struble M; Henzel W; Reilly D; Goeddel DV
    J Biol Chem; 1993 Oct; 268(30):22397-401. PubMed ID: 7901199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinction between the three disulfide isomers of guanylin 99-115 by low-energy collision-induced dissociation.
    Badock V; Raida M; Adermann K; Forssmann WG; Schrader M
    Rapid Commun Mass Spectrom; 1998; 12(23):1952-6. PubMed ID: 9842742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native and non-native structure in a protein-folding intermediate: spectroscopic studies of partially reduced IGF-I and an engineered alanine model.
    Hua QX; Narhi L; Jia W; Arakawa T; Rosenfeld R; Hawkins N; Miller JA; Weiss MA
    J Mol Biol; 1996 Jun; 259(2):297-313. PubMed ID: 8656430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of native disulfide bonds in endothelin-1. Structural evidence for the involvement of a highly specific salt bridge between the prosequence and the endothelin-1 sequence.
    Aumelas A; Kubo S; Chino N; Chiche L; Forest E; Roumestand C; Kobayashi Y
    Biochemistry; 1998 Apr; 37(15):5220-30. PubMed ID: 9548753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prouroguanylin and proguanylin: purification from colon, structure, and modulation of bioactivity by proteases.
    Hamra FK; Fan X; Krause WJ; Freeman RH; Chin DT; Smith CE; Currie MG; Forte LR
    Endocrinology; 1996 Jan; 137(1):257-65. PubMed ID: 8536621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of 10-kDa proguanylin as a major guanylin molecule in human intestine and plasma and its increase in renal insufficiency.
    Nakazato M; Yamaguchi H; Shiomi K; Date Y; Fujimoto S; Kangawa K; Matsuo H; Matsukura S
    Biochem Biophys Res Commun; 1994 Dec; 205(3):1966-75. PubMed ID: 7811289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the solution structure of the peptide hormone guanylin: observation of a novel form of topological stereoisomerism.
    Skelton NJ; Garcia KC; Goeddel DV; Quan C; Burnier JP
    Biochemistry; 1994 Nov; 33(46):13581-92. PubMed ID: 7947768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical synthesis and folding pathways of large cyclic polypeptides: studies of the cystine knot polypeptide kalata B1.
    Daly NL; Love S; Alewood PF; Craik DJ
    Biochemistry; 1999 Aug; 38(32):10606-14. PubMed ID: 10441158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition and signal transduction mechanism of Escherichia coli heat-stable enterotoxin and its receptor, guanylate cyclase C.
    Hasegawa M; Shimonishi Y
    J Pept Res; 2005 Feb; 65(2):261-71. PubMed ID: 15705168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations.
    Stultz CM
    Protein Sci; 2006 Sep; 15(9):2166-77. PubMed ID: 16943446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic role of the pro region of the neurophysin precursor in neurophysin folding: evidence from the effects of ligand peptides on folding.
    Deeb R; Breslow E
    Biochemistry; 1996 Jan; 35(3):864-73. PubMed ID: 8547267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The circulating bioactive form of human guanylin is a high molecular weight peptide (10.3 kDa).
    Kuhn M; Raida M; Adermann K; Schulz-Knappe P; Gerzer R; Heim JM; Forssmann WG
    FEBS Lett; 1993 Mar; 318(2):205-9. PubMed ID: 8095028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.