These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 10493720)

  • 1. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma.
    Fitch MT; Doller C; Combs CK; Landreth GE; Silver J
    J Neurosci; 1999 Oct; 19(19):8182-98. PubMed ID: 10493720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules.
    Fitch MT; Silver J
    Exp Neurol; 1997 Dec; 148(2):587-603. PubMed ID: 9417835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new in vitro model of the glial scar inhibits axon growth.
    Wanner IB; Deik A; Torres M; Rosendahl A; Neary JT; Lemmon VP; Bixby JL
    Glia; 2008 Nov; 56(15):1691-709. PubMed ID: 18618667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes.
    McKeon RJ; Schreiber RC; Rudge JS; Silver J
    J Neurosci; 1991 Nov; 11(11):3398-411. PubMed ID: 1719160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury.
    Khaing ZZ; Milman BD; Vanscoy JE; Seidlits SK; Grill RJ; Schmidt CE
    J Neural Eng; 2011 Aug; 8(4):046033. PubMed ID: 21753237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glial scar instability after brain injury.
    Frontczak-Baniewicz M; Walski M
    J Physiol Pharmacol; 2006 Sep; 57 Suppl 4():97-102. PubMed ID: 17072035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun fiber surface nanotopography influences astrocyte-mediated neurite outgrowth.
    Johnson CD; D'Amato AR; Puhl DL; Wich DM; Vesperman A; Gilbert RJ
    Biomed Mater; 2018 Jun; 13(5):054101. PubMed ID: 29762127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice.
    Ribotta MG; Menet V; Privat A
    Acta Neurochir Suppl; 2004; 89():87-92. PubMed ID: 15335106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New in vitro model of traumatic neuronal injury: evaluation of secondary injury and glutamate receptor-mediated neurotoxicity.
    Mukhin AG; Ivanova SA; Knoblach SM; Faden AI
    J Neurotrauma; 1997 Sep; 14(9):651-63. PubMed ID: 9337127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming macrophage-mediated axonal dieback following CNS injury.
    Busch SA; Horn KP; Silver DJ; Silver J
    J Neurosci; 2009 Aug; 29(32):9967-76. PubMed ID: 19675231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.
    Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM
    J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteopontin is indispensable for activation of astrocytes in injured mouse brain and primary culture.
    Ikeshima-Kataoka H; Matsui Y; Uede T
    Neurol Res; 2018 Dec; 40(12):1071-1079. PubMed ID: 30246619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intralesion injection of basic fibroblast growth factor alters glial reactivity to neural trauma.
    Menon VK; Landerholm TE
    Exp Neurol; 1994 Sep; 129(1):142-54. PubMed ID: 7925836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapamycin increases neuronal survival, reduces inflammation and astrocyte proliferation after spinal cord injury.
    Goldshmit Y; Kanner S; Zacs M; Frisca F; Pinto AR; Currie PD; Pinkas-Kramarski R
    Mol Cell Neurosci; 2015 Sep; 68():82-91. PubMed ID: 25936601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of neurite outgrowth on astroglial scars in vitro.
    Rudge JS; Silver J
    J Neurosci; 1990 Nov; 10(11):3594-603. PubMed ID: 2230948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel form of migration of glial precursors.
    Orentas DM; Miller RH
    Glia; 1996 Jan; 16(1):27-39. PubMed ID: 8787771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological Suppression of CNS Scarring by Deferoxamine Reduces Lesion Volume and Increases Regeneration in an In Vitro Model for Astroglial-Fibrotic Scarring and in Rat Spinal Cord Injury In Vivo.
    Vogelaar CF; König B; Krafft S; Estrada V; Brazda N; Ziegler B; Faissner A; Müller HW
    PLoS One; 2015; 10(7):e0134371. PubMed ID: 26222542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial-Astrocytic Crosstalk.
    Clark DPQ; Perreau VM; Shultz SR; Brady RD; Lei E; Dixit S; Taylor JM; Beart PM; Boon WC
    Neurochem Res; 2019 Jun; 44(6):1410-1424. PubMed ID: 30661228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Olfactory ensheathing cell-neurite alignment enhances neurite outgrowth in scar-like cultures.
    Khankan RR; Wanner IB; Phelps PE
    Exp Neurol; 2015 Jul; 269():93-101. PubMed ID: 25863021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue tears in the white matter after lateral fluid percussion brain injury in the rat: relevance to human brain injury.
    Graham DI; Raghupathi R; Saatman KE; Meaney D; McIntosh TK
    Acta Neuropathol; 2000 Feb; 99(2):117-24. PubMed ID: 10672317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.