These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 10493734)

  • 21. GIRK4 confers appropriate processing and cell surface localization to G-protein-gated potassium channels.
    Kennedy ME; Nemec J; Corey S; Wickman K; Clapham DE
    J Biol Chem; 1999 Jan; 274(4):2571-82. PubMed ID: 9891030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein-activated channels.
    Ferrer J; Nichols CG; Makhina EN; Salkoff L; Bernstein J; Gerhard D; Wasson J; Ramanadham S; Permutt A
    J Biol Chem; 1995 Nov; 270(44):26086-91. PubMed ID: 7592809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of GIRK2 in postnatal development of the weaver cerebellum.
    Liesi P; Stewart RR; Wright JM
    J Neurosci Res; 2000 Apr; 60(2):164-73. PubMed ID: 10740221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Heterologous facilitation of G protein-activated K(+) channels by beta-adrenergic stimulation via cAMP-dependent protein kinase.
    Müllner C; Vorobiov D; Bera AK; Uezono Y; Yakubovich D; Frohnwieser-Steinecker B; Dascal N; Schreibmayer W
    J Gen Physiol; 2000 May; 115(5):547-58. PubMed ID: 10779313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A regenerative link in the ionic fluxes through the weaver potassium channel underlies the pathophysiology of the mutation.
    Silverman SK; Kofuji P; Dougherty DA; Davidson N; Lester HA
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15429-34. PubMed ID: 8986828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in GIRK1/GIRK2 deactivation kinetics and basal activity in the presence and absence of RGS4.
    Ulens C; Daenens P; Tytgat J
    Life Sci; 2000 Sep; 67(19):2305-17. PubMed ID: 11065178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential effects of general anesthetics on G protein-coupled inwardly rectifying and other potassium channels.
    Yamakura T; Lewohl JM; Harris RA
    Anesthesiology; 2001 Jul; 95(1):144-53. PubMed ID: 11465552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The sensitivity of G protein-activated K+ channels toward halothane is essentially determined by the C terminus.
    Milovic S; Steinecker-Frohnwieser B; Schreibmayer W; Weigl LG
    J Biol Chem; 2004 Aug; 279(33):34240-9. PubMed ID: 15175324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specific regions of heteromeric subunits involved in enhancement of G protein-gated K+ channel activity.
    Chan KW; Sui JL; Vivaudou M; Logothetis DE
    J Biol Chem; 1997 Mar; 272(10):6548-55. PubMed ID: 9045681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pore mutation in a G-protein-gated inwardly rectifying K+ channel subunit causes loss of K+-dependent inhibition in weaver hippocampus.
    Jarolimek W; Bäurle J; Misgeld U
    J Neurosci; 1998 Jun; 18(11):4001-7. PubMed ID: 9592081
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma.
    Rubinstein M; Peleg S; Berlin S; Brass D; Keren-Raifman T; Dessauer CW; Ivanina T; Dascal N
    J Physiol; 2009 Jul; 587(Pt 14):3473-91. PubMed ID: 19470775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics.
    Weigl LG; Schreibmayer W
    Mol Pharmacol; 2001 Aug; 60(2):282-9. PubMed ID: 11455015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels.
    Lesage F; Guillemare E; Fink M; Duprat F; Heurteaux C; Fosset M; Romey G; Barhanin J; Lazdunski M
    J Biol Chem; 1995 Dec; 270(48):28660-7. PubMed ID: 7499385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dual modulation of GIRK1/GIRK2 channels by opioid receptor ligands.
    Ulens C; Daenens P; Tytgat J
    Eur J Pharmacol; 1999 Dec; 385(2-3):239-45. PubMed ID: 10607882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes.
    Hedin KE; Lim NF; Clapham DE
    Neuron; 1996 Feb; 16(2):423-9. PubMed ID: 8789957
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells.
    Kofuji P; Hofer M; Millen KJ; Millonig JH; Davidson N; Lester HA; Hatten ME
    Neuron; 1996 May; 16(5):941-52. PubMed ID: 8630252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective activation of heterologously expressed G protein-gated K+ channels by M2 muscarinic receptors in rat sympathetic neurones.
    Fernandez-Fernandez JM; Wanaverbecq N; Halley P; Caulfield MP; Brown DA
    J Physiol; 1999 Mar; 515 ( Pt 3)(Pt 3):631-7. PubMed ID: 10066893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular determinants for sodium-dependent activation of G protein-gated K+ channels.
    Ho IH; Murrell-Lagnado RD
    J Biol Chem; 1999 Mar; 274(13):8639-48. PubMed ID: 10085101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K(+) (GIRK) channels expressed in xenopus oocytes.
    Kobayashi T; Ikeda K; Kumanishi T
    Br J Pharmacol; 2000 Apr; 129(8):1716-22. PubMed ID: 10780978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanism for sodium-dependent activation of G protein-gated K+ channels.
    Ho IH; Murrell-Lagnado RD
    J Physiol; 1999 Nov; 520 Pt 3(Pt 3):645-51. PubMed ID: 10545132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.