BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 10493820)

  • 1. Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display.
    Wang B; Yang H; Liu YC; Jelinek T; Zhang L; Ruoslahti E; Fu H
    Biochemistry; 1999 Sep; 38(38):12499-504. PubMed ID: 10493820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove.
    Petosa C; Masters SC; Bankston LA; Pohl J; Wang B; Fu H; Liddington RC
    J Biol Chem; 1998 Jun; 273(26):16305-10. PubMed ID: 9632691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa.
    Masters SC; Pederson KJ; Zhang L; Barbieri JT; Fu H
    Biochemistry; 1999 Apr; 38(16):5216-21. PubMed ID: 10213629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the hydrophobic surface of an amphipathic groove of 14-3-3zeta disrupt its interaction with Raf-1 kinase.
    Wang H; Zhang L; Liddington R; Fu H
    J Biol Chem; 1998 Jun; 273(26):16297-304. PubMed ID: 9632690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raf-1 kinase and exoenzyme S interact with 14-3-3zeta through a common site involving lysine 49.
    Zhang L; Wang H; Liu D; Liddington R; Fu H
    J Biol Chem; 1997 May; 272(21):13717-24. PubMed ID: 9153224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of interactions of signaling proteins with phage-displayed ligands by fluorescence correlation spectroscopy.
    Schlaman HR; Schmidt K; Ottenhof D; van Es MH; Oosterkamp TH; Spaink HP
    J Biomol Screen; 2008 Sep; 13(8):766-76. PubMed ID: 18753688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 14-3-3 isotypes facilitate coupling of protein kinase C-zeta to Raf-1: negative regulation by 14-3-3 phosphorylation.
    Van Der Hoeven PC; Van Der Wal JC; Ruurs P; Van Dijk MC; Van Blitterswijk J
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):297-306. PubMed ID: 10620507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the 14-3-3 C-terminal loop in ligand interaction.
    Truong AB; Masters SC; Yang H; Fu H
    Proteins; 2002 Nov; 49(3):321-5. PubMed ID: 12360521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional conservation of 14-3-3 isoforms in inhibiting bad-induced apoptosis.
    Subramanian RR; Masters SC; Zhang H; Fu H
    Exp Cell Res; 2001 Nov; 271(1):142-51. PubMed ID: 11697890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The product of the primary response gene BRF1 inhibits the interaction between 14-3-3 proteins and cRaf-1 in the yeast trihybrid system.
    Bustin SA; McKay IA
    DNA Cell Biol; 1999 Aug; 18(8):653-61. PubMed ID: 10463061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Raf/MAPK signaling in Xenopus oocyte extracts by Raf-1-specific peptides.
    Radziwill G; Steinhusen U; Aitken A; Moelling K
    Biochem Biophys Res Commun; 1996 Oct; 227(1):20-6. PubMed ID: 8858097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 14-3-3 proteins associate with cdc25 phosphatases.
    Conklin DS; Galaktionov K; Beach D
    Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7892-6. PubMed ID: 7644510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions.
    Jaumot M; Hancock JF
    Oncogene; 2001 Jul; 20(30):3949-58. PubMed ID: 11494123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR spectroscopy of 14-3-3ζ reveals a flexible C-terminal extension: differentiation of the chaperone and phosphoserine-binding activities of 14-3-3ζ.
    Williams DM; Ecroyd H; Goodwin KL; Dai H; Fu H; Woodcock JM; Zhang L; Carver JA
    Biochem J; 2011 Aug; 437(3):493-503. PubMed ID: 21554249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function analysis of a phage display-derived peptide that binds to insulin-like growth factor binding protein 1.
    Skelton NJ; Chen YM; Dubree N; Quan C; Jackson DY; Cochran A; Zobel K; Deshayes K; Baca M; Pisabarro MT; Lowman HB
    Biochemistry; 2001 Jul; 40(29):8487-98. PubMed ID: 11456486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Substrate Identification Method for Human Scp1 Phosphatase Using Phosphorylation Mimic Phage Display.
    Otsubo K; Yoneda T; Kaneko A; Yagi S; Furukawa K; Chuman Y
    Protein Pept Lett; 2018; 25(1):76-83. PubMed ID: 29210629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of fetal liver tyrosine kinase 3 (flt3) ligand domain required for receptor binding and function using naturally occurring ligand isoforms.
    Mwangi W; Brown WC; Palmer GH
    J Immunol; 2000 Dec; 165(12):6966-74. PubMed ID: 11120823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proapoptotic protein Bad binds the amphipathic groove of 14-3-3zeta.
    Yang H; Masters SC; Wang H; Fu H
    Biochim Biophys Acta; 2001 Jun; 1547(2):313-9. PubMed ID: 11410287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation-dependent association of the Ras-related GTP-binding protein Rem with 14-3-3 proteins.
    Finlin BS; Andres DA
    Arch Biochem Biophys; 1999 Aug; 368(2):401-12. PubMed ID: 10441394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward cell-targeting gene therapy vectors: selection of cell-binding peptides from random peptide-presenting phage libraries.
    Barry MA; Dower WJ; Johnston SA
    Nat Med; 1996 Mar; 2(3):299-305. PubMed ID: 8612228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.