These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10493867)

  • 21. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL.
    Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nuclear magnetic resonance spectroscopy with the stringent substrate rhodanese bound to the single-ring variant SR1 of the E. coli chaperonin GroEL.
    Koculi E; Horst R; Horwich AL; Wüthrich K
    Protein Sci; 2011 Aug; 20(8):1380-6. PubMed ID: 21633984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide.
    Mendoza JA; Horowitz PM
    J Protein Chem; 1994 Jan; 13(1):15-22. PubMed ID: 8011067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing the "annealing" mechanism of GroEL minichaperone using molecular dynamics simulations.
    Stan G; Brooks BR; Thirumalai D
    J Mol Biol; 2005 Jul; 350(4):817-29. PubMed ID: 15967467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different conformations for the same polypeptide bound to chaperones DnaK and GroEL.
    Landry SJ; Jordan R; McMacken R; Gierasch LM
    Nature; 1992 Jan; 355(6359):455-7. PubMed ID: 1346469
    [TBL] [Abstract][Full Text] [Related]  

  • 26. GroEL-assisted refolding of adrenodoxin during chemical cluster insertion.
    Iametti S; Bera AK; Vecchio G; Grinberg A; Bernhardt R; Bonomi F
    Eur J Biochem; 2001 Apr; 268(8):2421-9. PubMed ID: 11298762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the chaperonin activity of GroEL at heat-shock temperature.
    Melkani GC; Zardeneta G; Mendoza JA
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1375-85. PubMed ID: 15833270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequential proton NMR resonance assignments, circular dichroism, and structural properties of a 50-residue substrate-binding peptide from DNA polymerase I.
    Mullen GP; Vaughn JB; Mildvan AS
    Arch Biochem Biophys; 1993 Feb; 301(1):174-83. PubMed ID: 8442659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone.
    Pellecchia M; Szyperski T; Wall D; Georgopoulos C; Wüthrich K
    J Mol Biol; 1996 Jul; 260(2):236-50. PubMed ID: 8764403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterization of Chromatium vinosum GroEL and GroES proteins overexpressed in Escherichia coli cells lacking the endogenous groESL operon.
    Dionisi HM; Viale AM
    Protein Expr Purif; 1998 Nov; 14(2):275-82. PubMed ID: 9790891
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crystal structure of a liganded trehalose/maltose-binding protein from the hyperthermophilic Archaeon Thermococcus litoralis at 1.85 A.
    Diez J; Diederichs K; Greller G; Horlacher R; Boos W; Welte W
    J Mol Biol; 2001 Jan; 305(4):905-15. PubMed ID: 11162101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Minichaperone (GroEL191-345) mediated folding of MalZ proceeds by binding and release of native and functional intermediates.
    Jain N; Knowles TJ; Lund PA; Chaudhuri TK
    Biochim Biophys Acta Proteins Proteom; 2018 Sep; 1866(9):941-951. PubMed ID: 29864530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of highly stable functional GroEL minichaperones.
    Wang Q; Buckle AM; Foster NW; Johnson CM; Fersht AR
    Protein Sci; 1999 Oct; 8(10):2186-93. PubMed ID: 10548065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Basis of substrate binding by the chaperonin GroEL.
    Wang Z; Feng Hp; Landry SJ; Maxwell J; Gierasch LM
    Biochemistry; 1999 Sep; 38(39):12537-46. PubMed ID: 10504222
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The oligomeric structure of GroEL/GroES is required for biologically significant chaperonin function in protein folding.
    Weber F; Keppel F; Georgopoulos C; Hayer-Hartl MK; Hartl FU
    Nat Struct Biol; 1998 Nov; 5(11):977-85. PubMed ID: 9808043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein.
    Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M
    J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Active rhodanese lacking nonessential sulfhydryl groups contains an unstable C-terminal domain and can be bound, inactivated, and reactivated by GroEL.
    Ybarra J; Bhattacharyya AM; Panda M; Horowitz PM
    J Biol Chem; 2003 Jan; 278(3):1693-9. PubMed ID: 12433928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NH2-terminal sequence truncation decreases the stability of bovine rhodanese, minimally perturbs its crystal structure, and enhances interaction with GroEL under native conditions.
    Trevino RJ; Gliubich F; Berni R; Cianci M; Chirgwin JM; Zanotti G; Horowitz PM
    J Biol Chem; 1999 May; 274(20):13938-47. PubMed ID: 10318804
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Productive folding of a tethered protein in the chaperonin GroEL-GroES cage.
    Motojima F; Yoshida M
    Biochem Biophys Res Commun; 2015 Oct; 466(1):72-5. PubMed ID: 26325470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chaperonin-affected refolding of alpha-lactalbumin: effects of nucleotides and the co-chaperonin GroES.
    Makio T; Arai M; Kuwajima K
    J Mol Biol; 1999 Oct; 293(1):125-37. PubMed ID: 10512721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.