These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10493867)

  • 41. Ligand binding characteristics of the carboxyl-terminal domain of the cytokine receptor homologous region of the granulocyte colony-stimulating factor receptor.
    Anaguchi H; Hiraoka O; Yamasaki K; Naito S; Ota Y
    J Biol Chem; 1995 Nov; 270(46):27845-51. PubMed ID: 7499256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrogen peroxide induces the dissociation of GroEL into monomers that can facilitate the reactivation of oxidatively inactivated rhodanese.
    Melkani GC; McNamara C; Zardeneta G; Mendoza JA
    Int J Biochem Cell Biol; 2004 Mar; 36(3):505-18. PubMed ID: 14687928
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxidized GroEL can function as a chaperonin.
    Melkani GC; Zardeneta G; Mendoza JA
    Front Biosci; 2004 Jan; 9():724-31. PubMed ID: 14766403
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES.
    Weber F; Hayer-Hartl M
    Methods Mol Biol; 2000; 140():117-26. PubMed ID: 11484478
    [No Abstract]   [Full Text] [Related]  

  • 45. Identification of the active site of gelatinase B as the structural element sufficient for converting a protein to a metalloprotease.
    Kaur K; Zhu K; Whittemore MS; Petersen RL; Lichte A; Tschesche H; Pourmotabbed T
    Biochemistry; 2002 Apr; 41(15):4789-97. PubMed ID: 11939773
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protection of GroEL by its methionine residues against oxidation by hydrogen peroxide.
    Melkani GC; Kestetter J; Sielaff R; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2006 Aug; 347(2):534-9. PubMed ID: 16828704
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Analysis of the perturbation of phospholipid model membranes by rhodanese and its presequence.
    Zardeneta G; Horowitz PM
    J Biol Chem; 1992 Dec; 267(34):24193-8. PubMed ID: 1447169
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single molecular observation of the interaction of GroEL with substrate proteins.
    Yamasaki R; Hoshino M; Wazawa T; Ishii Y; Yanagida T; Kawata Y; Higurashi T; Sakai K; Nagai J; Goto Y
    J Mol Biol; 1999 Oct; 292(5):965-72. PubMed ID: 10512696
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins.
    Fox JD; Kapust RB; Waugh DS
    Protein Sci; 2001 Mar; 10(3):622-30. PubMed ID: 11344330
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improved segmental isotope labeling of proteins and application to a larger protein.
    Otomo T; Teruya K; Uegaki K; Yamazaki T; Kyogoku Y
    J Biomol NMR; 1999 Jun; 14(2):105-14. PubMed ID: 10427740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GroEL binds to and unfolds rhodanese posttranslationally.
    Reid BG; Flynn GC
    J Biol Chem; 1996 Mar; 271(12):7212-7. PubMed ID: 8636159
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GroEL interacts transiently with oxidatively inactivated rhodanese facilitating its reactivation.
    Melkani GC; Zardeneta G; Mendoza JA
    Biochem Biophys Res Commun; 2002 Jun; 294(4):893-9. PubMed ID: 12061791
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy.
    Rubin SM; Lee SY; Ruiz EJ; Pines A; Wemmer DE
    J Mol Biol; 2002 Sep; 322(2):425-40. PubMed ID: 12217701
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ligand-induced conformational changes of GroEL are dependent on the bound substrate polypeptide.
    Mendoza JA; Campo GD
    J Biol Chem; 1996 Jul; 271(27):16344-9. PubMed ID: 8663187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Residues in the alpha helix 7 of the bacterial maltose binding protein which are important in interactions with the Mal FGK2 complex.
    Szmelcman S; Sassoon N; Hofnung M
    Protein Sci; 1997 Mar; 6(3):628-36. PubMed ID: 9070445
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structures and solution conformations of a dominant-negative mutant of Escherichia coli maltose-binding protein.
    Shilton BH; Shuman HA; Mowbray SL
    J Mol Biol; 1996 Nov; 264(2):364-76. PubMed ID: 8951382
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of substrate recognition by the chaperonin GroEL.
    Houry WA
    Biochem Cell Biol; 2001; 79(5):569-77. PubMed ID: 11716298
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Conformational and functional properties of an undecapeptide epitope fused with the C-terminal end of the maltose binding protein.
    Rondard P; Brégégère F; Lecroisey A; Delepierre M; Bedouelle H
    Biochemistry; 1997 Jul; 36(29):8954-61. PubMed ID: 9220983
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photoincorporation of 4,4'-bis(1-anilino-8-naphthalenesulfonic acid) into the apical domain of GroEL: specific information from a nonspecific probe.
    Seale JW; Martinez JL; Horowitz PM
    Biochemistry; 1995 Jun; 34(22):7443-9. PubMed ID: 7779787
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tritium NMR spectroscopy of ligand binding to maltose-binding protein.
    Gehring K; Williams PG; Pelton JG; Morimoto H; Wemmer DE
    Biochemistry; 1991 Jun; 30(22):5524-31. PubMed ID: 2036421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.