BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 10493878)

  • 1. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif.
    Praefcke GJ; Geyer M; Schwemmle M; Robert Kalbitzer H; Herrmann C
    J Mol Biol; 1999 Sep; 292(2):321-32. PubMed ID: 10493878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleotide binding and self-stimulated GTPase activity of human guanylate-binding protein 1 (hGBP1).
    Kunzelmann S; Praefcke GJ; Herrmann C
    Methods Enzymol; 2005; 404():512-27. PubMed ID: 16413296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis.
    Praefcke GJ; Kloep S; Benscheid U; Lilie H; Prakash B; Herrmann C
    J Mol Biol; 2004 Nov; 344(1):257-69. PubMed ID: 15504415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
    Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model.
    Zhang B; Zhang Y; Shacter E; Zheng Y
    Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The guanine cap of human guanylate-binding protein 1 is responsible for dimerization and self-activation of GTP hydrolysis.
    Wehner M; Kunzelmann S; Herrmann C
    FEBS J; 2012 Jan; 279(2):203-10. PubMed ID: 22059445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide dependent cysteine reactivity of hGBP1 uncovers a domain movement during GTP hydrolysis.
    Vöpel T; Kunzelmann S; Herrmann C
    FEBS Lett; 2009 Jun; 583(12):1923-7. PubMed ID: 19463820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into the GTPase domain of Escherichia coli MnmE protein.
    Monleón D; Martínez-Vicente M; Esteve V; Yim L; Prado S; Armengod ME; Celda B
    Proteins; 2007 Feb; 66(3):726-39. PubMed ID: 17143896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S111N mutation in the helical domain of human Gs(alpha) reduces its GDP/GTP exchange rate.
    Brito M; Guzmán L; Romo X; Soto X; Hinrichs MV; Olate J
    J Cell Biochem; 2002; 85(3):615-20. PubMed ID: 11968001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The GTP-binding domain of McrB: more than just a variation on a common theme?
    Pieper U; Schweitzer T; Groll DH; Gast FU; Pingoud A
    J Mol Biol; 1999 Sep; 292(3):547-56. PubMed ID: 10497020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of individual domains and identification of internal gap in human guanylate binding protein-1.
    Abdullah N; Srinivasan B; Modiano N; Cresswell P; Sau AK
    J Mol Biol; 2009 Feb; 386(3):690-703. PubMed ID: 19150356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical properties of the human guanylate binding protein 5 and a tumor-specific truncated splice variant.
    Wehner M; Herrmann C
    FEBS J; 2010 Apr; 277(7):1597-605. PubMed ID: 20180847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis by fluorescence of the interaction between Ras and the catalytic domain of the guanine nucleotide exchange factor Cdc25Mm.
    Lenzen C; Cool RH; Prinz H; Kuhlmann J; Wittinghofer A
    Biochemistry; 1998 May; 37(20):7420-30. PubMed ID: 9585556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of the nucleotide exchange factor ITSN1L: evidence for a kinetic discrimination of GEF-stimulated nucleotide release from Cdc42.
    Kintscher C; Groemping Y
    J Mol Biol; 2009 Mar; 387(2):270-83. PubMed ID: 19356586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient kinetic investigation of GTP hydrolysis catalyzed by interferon-gamma-induced hGBP1 (human guanylate binding protein 1).
    Kunzelmann S; Praefcke GJ; Herrmann C
    J Biol Chem; 2006 Sep; 281(39):28627-35. PubMed ID: 16873363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutation of the highly conserved Arg165 and Glu168 residues of human Gsalpha disrupts the alphaD-alphaE loop and enhances basal GDP/GTP exchange rate.
    Hinrichs MV; Montecino M; Bunster M; Olate J
    J Cell Biochem; 2004 Oct; 93(2):409-17. PubMed ID: 15368366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interferon-induced 67-kDa guanylate-binding protein (hGBP1) is a GTPase that converts GTP to GMP.
    Schwemmle M; Staeheli P
    J Biol Chem; 1994 Apr; 269(15):11299-305. PubMed ID: 7512561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI.
    Golovanov AP; Chuang TH; DerMardirossian C; Barsukov I; Hawkins D; Badii R; Bokoch GM; Lian LY; Roberts GC
    J Mol Biol; 2001 Jan; 305(1):121-35. PubMed ID: 11114252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminum fluoride.
    Graham DL; Eccleston JF; Lowe PN
    Biochemistry; 1999 Jan; 38(3):985-91. PubMed ID: 9893994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of GTPases carrying hydrophobic amino acid substitutions in lieu of the catalytic glutamine: implications for GTP hydrolysis.
    Mishra R; Gara SK; Mishra S; Prakash B
    Proteins; 2005 May; 59(2):332-8. PubMed ID: 15726588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.