These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 10495108)

  • 1. Calculation of absorbed dose and biological effectiveness from photonuclear reactions in a bremsstrahlung beam of end point 50 MeV.
    Gudowska I; Brahme A; Andreo P; Gudowski W; Kierkegaard J
    Phys Med Biol; 1999 Sep; 44(9):2099-125. PubMed ID: 10495108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast neutron absorbed dose distributions in the energy range 0.5-80 meV--a Monte Carlo study.
    Söderberg J; Carlsson GA
    Phys Med Biol; 2000 Oct; 45(10):2987-3007. PubMed ID: 11049184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of Nuclear Particles Production at High-Energy Photon Beams from a Linac Operating at 6, 10 and 15 MV.
    Marchesini R; Bettega D; Calzolari P; Pignoli E
    Radiat Prot Dosimetry; 2017 May; 174(4):471-477. PubMed ID: 27522047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations.
    Siebers JV; Keall PJ; Nahum AE; Mohan R
    Phys Med Biol; 2000 Apr; 45(4):983-95. PubMed ID: 10795986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An estimation of the relative biological effectiveness of 50 MV bremsstrahlung beams by microdosimetric techniques.
    Tilikidis A; Lind B; Näfstadius P; Brahme A
    Phys Med Biol; 1996 Jan; 41(1):55-69. PubMed ID: 8685258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bremsstrahlung and photoneutron production in a steel shield for 15-22-MeV clinical electron beams.
    Fujita Y; Myojoyama A; Saitoh H
    Radiat Prot Dosimetry; 2015 Feb; 163(2):148-59. PubMed ID: 24821930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of neutron contamination on dosimetry in external photon beam radiotherapy.
    Horst F; Czarnecki D; Zink K
    Med Phys; 2015 Nov; 42(11):6529-36. PubMed ID: 26520743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonuclear production in tissue for different 50 MV bremsstrahlung beams.
    Sätherberg A; Johansson L
    Med Phys; 1998 May; 25(5):683-8. PubMed ID: 9608479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of individual organ doses in a realistic human phantom from neutron and gamma stimulated spectroscopy of the breast and liver.
    Belley MD; Segars WP; Kapadia AJ
    Med Phys; 2014 Jun; 41(6):063902. PubMed ID: 24877842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of dose delivery verification by PET imaging of photonuclear reactions following high energy photon therapy.
    Janek S; Svensson R; Jonsson C; Brahme A
    Phys Med Biol; 2006 Nov; 51(22):5769-83. PubMed ID: 17068364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the production of neutrons in laminated barriers for 10 MV medical accelerator rooms.
    Facure A; da Silva AX; da Rosa LA; Cardoso SC; Rezende GF
    Med Phys; 2008 Jul; 35(7):3285-92. PubMed ID: 18697553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Empirical description and Monte Carlo simulation of fast neutron pencil beams as basis of a treatment planning system.
    Bourhis-Martin E; Meissner P; Rassow J; Baumhoer W; Schmidt R; Sauerwein W
    Med Phys; 2002 Aug; 29(8):1670-7. PubMed ID: 12201412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo evaluation of a photon pencil kernel algorithm applied to fast neutron therapy treatment planning.
    Söderberg J; Alm Carlsson G; Ahnesjö A
    Phys Med Biol; 2003 Oct; 48(20):3327-44. PubMed ID: 14620061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary bremsstrahlung and the energy-conservation aspects of kerma in photon-irradiated media.
    Kumar S; Nahum AE
    Phys Med Biol; 2016 Feb; 61(3):1389-402. PubMed ID: 26797487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams.
    Tzedakis A; Damilakis JE; Mazonakis M; Stratakis J; Varveris H; Gourtsoyiannis N
    Med Phys; 2004 Apr; 31(4):907-13. PubMed ID: 15125009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator.
    Puchalska M; Sihver L
    Phys Med Biol; 2015 Jun; 60(12):N261-70. PubMed ID: 26057186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo study of in-field and out-of-field dose distributions from a linear accelerator operating with and without a flattening-filter.
    Almberg SS; Frengen J; Lindmo T
    Med Phys; 2012 Aug; 39(8):5194-203. PubMed ID: 22894444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the use of external aluminium targets for portal imaging in a medical accelerator using Geant4 Monte Carlo simulation.
    Kim H; Kim B; Baek J; Oh Y; Yun S; Jang H
    Br J Radiol; 2018 Apr; 91(1084):20170376. PubMed ID: 29338304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.