These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 10495144)
1. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation. Hsieh YF; Wang T; Turner CH Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144 [TBL] [Abstract][Full Text] [Related]
2. Strain rate as a controlling influence on adaptive modeling in response to dynamic loading of the ulna in growing male rats. Mosley JR; Lanyon LE Bone; 1998 Oct; 23(4):313-8. PubMed ID: 9763142 [TBL] [Abstract][Full Text] [Related]
3. Noninvasive loading of the rat ulna in vivo induces a strain-related modeling response uncomplicated by trauma or periostal pressure. Torrance AG; Mosley JR; Suswillo RF; Lanyon LE Calcif Tissue Int; 1994 Mar; 54(3):241-7. PubMed ID: 8055374 [TBL] [Abstract][Full Text] [Related]
4. Modification of the in vivo four-point loading model for studying mechanically induced bone adaptation. Forwood MR; Bennett MB; Blowers AR; Nadorfi RL Bone; 1998 Sep; 23(3):307-10. PubMed ID: 9737355 [TBL] [Abstract][Full Text] [Related]
5. Site specific bone adaptation response to mechanical loading. Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268 [TBL] [Abstract][Full Text] [Related]
6. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading. Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y Clin Biomech (Bristol); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217 [TBL] [Abstract][Full Text] [Related]
7. Effects of the viscoelastic behavior of the rat ulna loading model. Lanyon L; Mosley J; Torrance A Bone; 1999 Sep; 25(3):383-4. PubMed ID: 10495145 [No Abstract] [Full Text] [Related]
8. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading. Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566 [TBL] [Abstract][Full Text] [Related]
9. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo]. Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232 [TBL] [Abstract][Full Text] [Related]
10. Validation of a technique for studying functional adaptation of the mouse ulna in response to mechanical loading. Lee KC; Maxwell A; Lanyon LE Bone; 2002 Sep; 31(3):407-12. PubMed ID: 12231414 [TBL] [Abstract][Full Text] [Related]
11. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies. Norman SC; Wagner DW; Beaupre GS; Castillo AB J Biomech; 2015 Jan; 48(1):53-8. PubMed ID: 25443882 [TBL] [Abstract][Full Text] [Related]
12. Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system. Knothe Tate ML; Tami AE; Netrebko P; Milz S; Docheva D Technol Health Care; 2012; 20(5):363-78. PubMed ID: 23079942 [TBL] [Abstract][Full Text] [Related]
13. Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. De Souza RL; Matsuura M; Eckstein F; Rawlinson SC; Lanyon LE; Pitsillides AA Bone; 2005 Dec; 37(6):810-8. PubMed ID: 16198164 [TBL] [Abstract][Full Text] [Related]
14. Diaphyseal bone formation in murine tibiae in response to knee loading. Zhang P; Tanaka SM; Jiang H; Su M; Yokota H J Appl Physiol (1985); 2006 May; 100(5):1452-9. PubMed ID: 16410382 [TBL] [Abstract][Full Text] [Related]
15. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844 [TBL] [Abstract][Full Text] [Related]
16. Strain magnitude related changes in whole bone architecture in growing rats. Mosley JR; March BM; Lynch J; Lanyon LE Bone; 1997 Mar; 20(3):191-8. PubMed ID: 9071468 [TBL] [Abstract][Full Text] [Related]
17. Cellular accommodation and the response of bone to mechanical loading. Schriefer JL; Warden SJ; Saxon LK; Robling AG; Turner CH J Biomech; 2005 Sep; 38(9):1838-45. PubMed ID: 16023471 [TBL] [Abstract][Full Text] [Related]
18. Development of an in vivo rabbit ulnar loading model. Baumann AP; Aref MW; Turnbull TL; Robling AG; Niebur GL; Allen MR; Roeder RK Bone; 2015 Jun; 75():55-61. PubMed ID: 25683214 [TBL] [Abstract][Full Text] [Related]
19. The adaptive response of rat tibia to different levels of peak strain and durations of experiment. Liu Z; Gao J; Gong H Med Eng Phys; 2022 Apr; 102():103785. PubMed ID: 35346433 [TBL] [Abstract][Full Text] [Related]
20. Modeling of cortical bone adaptation in a rat ulna: effect of frequency. Chennimalai Kumar N; Dantzig JA; Jasiuk IM Bone; 2012 Mar; 50(3):792-7. PubMed ID: 22210383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]