These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10496344)

  • 1. Proteolytic cleavage of p53 mutants in response to mismatched DNA.
    Mee T; Okorokov AL; Metcalfe S; Milner J
    Br J Cancer; 1999 Sep; 81(2):212-8. PubMed ID: 10496344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction with damaged DNA induces selective proteolytic cleavage of p53 to yield 40 kDa and 35 kDa fragments competent for sequence-specific DNA binding.
    Molinari M; Okorokov AL; Milner J
    Oncogene; 1996 Nov; 13(10):2077-86. PubMed ID: 8950974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific DNA binding by different classes of human p53 mutants.
    Rolley N; Butcher S; Milner J
    Oncogene; 1995 Aug; 11(4):763-70. PubMed ID: 7651740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The N terminus of the murine p53 tumour suppressor is an independent regulatory domain affecting activation and thermostability.
    Hansen S; Lane DP; Midgley CA
    J Mol Biol; 1998 Jan; 275(4):575-88. PubMed ID: 9466932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific DNA binding by p53 is independent of mutation at serine 389, the casein kinase II site.
    Rolley N; Milner J
    Oncogene; 1994 Oct; 9(10):3067-70. PubMed ID: 8084615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of canine p53 cDNA and detailed characterization of the full length canine p53 protein.
    Veldhoen N; Milner J
    Oncogene; 1998 Feb; 16(8):1077-84. PubMed ID: 9519881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induced N- and C-terminal cleavage of p53: a core fragment of p53, generated by interaction with damaged DNA, promotes cleavage of the N-terminus of full-length p53, whereas ssDNA induces C-terminal cleavage of p53.
    Okorokov AL; Ponchel F; Milner J
    EMBO J; 1997 Oct; 16(19):6008-17. PubMed ID: 9312058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteolytic cleavage of p53: a model for the activation of p53 in response to DNA damage.
    Okorokov AL; Milner J
    Oncol Res; 1997; 9(6-7):267-73. PubMed ID: 9406231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro analysis of the dominant negative effect of p53 mutants.
    Chène P
    J Mol Biol; 1998 Aug; 281(2):205-9. PubMed ID: 9698540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the p53-rescue drug CP-31398 in vitro and in living cells.
    Rippin TM; Bykov VJ; Freund SM; Selivanova G; Wiman KG; Fersht AR
    Oncogene; 2002 Mar; 21(14):2119-29. PubMed ID: 11948395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and kinetic analysis of p53-DNA complexes and comparison of human and murine p53.
    Hall AR; Milner J
    Oncogene; 1995 Feb; 10(3):561-7. PubMed ID: 7845681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structures and functions of the tumor suppressor p53.
    Milner J
    Pathol Biol (Paris); 1997 Dec; 45(10):797-803. PubMed ID: 9769943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoring wild-type conformation and DNA-binding activity of mutant p53 is insufficient for restoration of transcriptional activity.
    Brazda V; Muller P; Brozkova K; Vojtesek B
    Biochem Biophys Res Commun; 2006 Dec; 351(2):499-506. PubMed ID: 17070499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutants of the tumour suppressor p53 L1 loop as second-site suppressors for restoring DNA binding to oncogenic p53 mutations: structural and biochemical insights.
    Merabet A; Houlleberghs H; Maclagan K; Akanho E; Bui TT; Pagano B; Drake AF; Fraternali F; Nikolova PV
    Biochem J; 2010 Mar; 427(2):225-36. PubMed ID: 20113312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced sensitivity to anti-benzo(a)pyrene-diol-epoxide DNA damage correlates with decreased global genomic repair attributable to abrogated p53 function in human cells.
    Wani MA; Zhu Q; El-Mahdy M; Venkatachalam S; Wani AA
    Cancer Res; 2000 Apr; 60(8):2273-80. PubMed ID: 10786695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. p53 phosphorylation mutants retain transcription activity.
    Fuchs B; O'Connor D; Fallis L; Scheidtmann KH; Lu X
    Oncogene; 1995 Feb; 10(4):789-93. PubMed ID: 7862459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumour cells.
    Böhnke A; Westphal F; Schmidt A; El-Awady RA; Dahm-Daphi J
    Int J Radiat Biol; 2004 Jan; 80(1):53-63. PubMed ID: 14761850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of p53 at serine 37 is important for transcriptional activity and regulation in response to DNA damage.
    Dohoney KM; Guillerm C; Whiteford C; Elbi C; Lambert PF; Hager GL; Brady JN
    Oncogene; 2004 Jan; 23(1):49-57. PubMed ID: 14712210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 'wildtype' conformation of p53: epitope mapping using hybrid proteins.
    Wang PL; Sait F; Winter G
    Oncogene; 2001 Apr; 20(18):2318-24. PubMed ID: 11402327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.