BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10496413)

  • 1. ESR studies of ascorbic acid-dependent recycling of the vitamin E homologue Trolox by coenzyme Q0 in murine skin homogenates.
    Guo Q; Packer L
    Redox Rep; 1999; 4(3):105-11. PubMed ID: 10496413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbate-dependent recycling of the vitamin E homologue Trolox by dihydrolipoate and glutathione in murine skin homogenates.
    Guo Q; Packer L
    Free Radic Biol Med; 2000 Aug; 29(3-4):368-74. PubMed ID: 11035266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADH and NADPH-dependent reduction of coenzyme Q at the plasma membrane.
    Arroyo A; Kagan VE; Tyurin VA; Burgess JR; de Cabo R; Navas P; Villalba JM
    Antioxid Redox Signal; 2000; 2(2):251-62. PubMed ID: 11229530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between vitamin E homologues and ascorbate free radicals in murine skin homogenates irradiated with ultraviolet light.
    Kitazawa M; Podda M; Thiele J; Traber MG; Iwasaki K; Sakamoto K; Packer L
    Photochem Photobiol; 1997 Feb; 65(2):355-65. PubMed ID: 9066312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma membrane NADH-coenzyme Q0 reductase generates semiquinone radicals and recycles vitamin E homologue in a superoxide-dependent reaction.
    Kagan VE; Arroyo A; Tyurin VA; Tyurina YY; Villalba JM; Navas P
    FEBS Lett; 1998 May; 428(1-2):43-6. PubMed ID: 9645471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for recycling of myeloperoxidase-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxy chromane, by ascorbate/dihydrolipoate in living HL-60 cells.
    Kagan VE; Kuzmenko AI; Shvedova AA; Kisin ER; Li R; Martin I; Quinn PJ; Tyurin VA; Tyurina YY; Yalowich JC
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):72-84. PubMed ID: 12595076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ascorbate is the primary reductant of the phenoxyl radical of etoposide in the presence of thiols both in cell homogenates and in model systems.
    Kagan VE; Yalowich JC; Day BW; Goldman R; Gantchev TG; Stoyanovsky DA
    Biochemistry; 1994 Aug; 33(32):9651-60. PubMed ID: 8068642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-electron oxidation of Trolox C (a vitamin E analogue) by peroxidases.
    Nakamura M
    J Biochem; 1990 Aug; 108(2):245-9. PubMed ID: 2172226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitamin E analogue Trolox C. E.s.r. and pulse-radiolysis studies of free-radical reactions.
    Davies MJ; Forni LG; Willson RL
    Biochem J; 1988 Oct; 255(2):513-22. PubMed ID: 2849418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals.
    Ito S; Hyodo F
    Sci Rep; 2016 Feb; 6():21407. PubMed ID: 26892591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tyrosinase-induced phenoxyl radicals of etoposide (VP-16): interaction with reductants in model systems, K562 leukemic cell and nuclear homogenates.
    Stoyanovsky D; Yalowich J; Gantchev T; Kagan V
    Free Radic Res Commun; 1993; 19(6):371-86. PubMed ID: 8168727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet light-induced generation of vitamin E radicals and their recycling. A possible photosensitizing effect of vitamin E in skin.
    Kagan V; Witt E; Goldman R; Scita G; Packer L
    Free Radic Res Commun; 1992; 16(1):51-64. PubMed ID: 1325398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protection of vitamin E, selenium, trolox C, ascorbic acid palmitate, acetylcysteine, coenzyme Q0, coenzyme Q10, beta-carotene, canthaxanthin, and (+)-catechin against oxidative damage to rat blood and tissues in vivo.
    Chen H; Tappel AL
    Free Radic Biol Med; 1995 May; 18(5):949-53. PubMed ID: 7797106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenoxyl radicals of etoposide (VP-16) can directly oxidize intracellular thiols: protective versus damaging effects of phenolic antioxidants.
    Tyurina YY; Tyurin VA; Yalowich JC; Quinn PJ; Claycamp HG; Schor NF; Pitt BR; Kagan VE
    Toxicol Appl Pharmacol; 1995 Apr; 131(2):277-88. PubMed ID: 7716769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An EPR method for estimating activity of antioxidants in mouse skin using an anthralin-derived radical model.
    Kawai S; Matsumoto K; Utsumi H
    Free Radic Res; 2010 Mar; 44(3):267-74. PubMed ID: 20001648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and recycling of radicals from phenolic antioxidants.
    Kagan VE; Serbinova EA; Packer L
    Arch Biochem Biophys; 1990 Jul; 280(1):33-9. PubMed ID: 2162153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation mechanism of vitamin E analogue (Trolox C, 6-hydroxy-2,2,5,7,8-pentamethylchroman) and vitamin E by horseradish peroxidase and myoglobin.
    Nakamura M; Hayashi T
    Arch Biochem Biophys; 1992 Dec; 299(2):313-9. PubMed ID: 1332620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrinogen is a co-antioxidant that supplements the vitamin E analog trolox in a model system.
    Abudu N; Miller JJ; Levinson SS
    Free Radic Res; 2006 Mar; 40(3):321-31. PubMed ID: 16484048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The antioxidant and pro-oxidant activity of vitamin C and trolox in vitro: a comparative study.
    Poljsak B; Raspor P
    J Appl Toxicol; 2008 Mar; 28(2):183-8. PubMed ID: 17582581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical scavenging capacity in human skin before and after vitamin C uptake: an in vivo feasibility study using electron paramagnetic resonance spectroscopy.
    Lauer AC; Groth N; Haag SF; Darvin ME; Lademann J; Meinke MC
    J Invest Dermatol; 2013 Apr; 133(4):1102-4. PubMed ID: 23190876
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.