These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Transfection of Bacillus subtilis with bacteriophage H1 DNA: fate of transfecting DNA and transfection enhancement in B. subtilis uur+ and uur- strains. Arwert F; Venema G Mol Gen Genet; 1974; 128(1):55-72. PubMed ID: 4207204 [No Abstract] [Full Text] [Related]
43. Evolution of natural transformation: testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae. Redfield RJ Genetics; 1993 Apr; 133(4):755-61. PubMed ID: 8462839 [TBL] [Abstract][Full Text] [Related]
44. The two major spore DNA repair pathways, nucleotide excision repair and spore photoproduct lyase, are sufficient for the resistance of Bacillus subtilis spores to artificial UV-C and UV-B but not to solar radiation. Xue Y; Nicholson WL Appl Environ Microbiol; 1996 Jul; 62(7):2221-7. PubMed ID: 8779559 [TBL] [Abstract][Full Text] [Related]
45. Restriction of hemimethylated DNA by the Bacillus subtilis R system. Bron S; Luxen E; Venema G Mol Gen Genet; 1984; 195(1-2):370-3. PubMed ID: 6436649 [TBL] [Abstract][Full Text] [Related]
46. Isolation of a Bacillus subtilis 168 derivative sensitive to defective bacteriophage PBSX. Yasbin RE; Ledbetter M J Virol; 1978 Feb; 25(2):703-4. PubMed ID: 415153 [TBL] [Abstract][Full Text] [Related]
47. In vitro repair of UV-irradiated Micrococcus luteus bacteriophage N1 transfecting DNA. Mahler I; George J; Grossman L J Virol; 1974 Mar; 13(3):765-7. PubMed ID: 4823319 [TBL] [Abstract][Full Text] [Related]
48. On the dose response in B. subtilis transfection: involvement of aggregates in phi 29 transfection. Hirokawa H; Trautner TA; Lüder G Mol Gen Genet; 1977 Nov; 156(3):263-6. PubMed ID: 414069 [TBL] [Abstract][Full Text] [Related]
49. An ethA mutation in Bacillus subtilis 168 permits induction of sporulation by ethionine and increases DNA modification of bacteriophage phi 105. Allen ER; Orrego C; Wabiko H; Freese E J Bacteriol; 1986 Apr; 166(1):1-8. PubMed ID: 3082850 [TBL] [Abstract][Full Text] [Related]
50. DNA repair and the evolution of transformation in the bacterium Bacillus subtilis. Michod RE; Wojciechowski MF; Hoelzer MA Genetics; 1988 Jan; 118(1):31-9. PubMed ID: 8608929 [TBL] [Abstract][Full Text] [Related]
51. Protease-sensitive transfection of Bacillus subtilis with bacteriophage GA-1 DNA: a probable case of heterologous transfection. Arwert F; Venema G J Virol; 1974 Mar; 13(3):584-9. PubMed ID: 4207247 [TBL] [Abstract][Full Text] [Related]
52. Repair and subsequent fragmentation of deoxyribonucleic acid in ultraviolet-irradiated Bacillus subtilis recA. Hadden CT J Bacteriol; 1977 Dec; 132(3):856-61. PubMed ID: 411783 [TBL] [Abstract][Full Text] [Related]
53. Repair of U.V. damages in Bacillus subtilis cultures competent for transformation: difference between competent and non-competent fractions. Sgroi G; Cordone L; Fornili SL Nucleic Acids Res; 1975 Sep; 2(9):1569-77. PubMed ID: 809758 [TBL] [Abstract][Full Text] [Related]
54. The influence of temperate bacteriophage phi105 on transformation and transfection in Bacillus subtilis. Yasbin RE; Young FE Biochem Biophys Res Commun; 1972 Apr; 47(2):365-71. PubMed ID: 4196974 [No Abstract] [Full Text] [Related]
55. Host cell reactivation of Bacillus subtilis bacteriophages. Ferrari E; Siccardi AG; Galizzi A; Canosi U; Mazza G J Bacteriol; 1977 Aug; 131(2):382-8. PubMed ID: 407209 [TBL] [Abstract][Full Text] [Related]
56. Mechanism of transfection with deoxyribonucleic acid from the temperate Bacillus bacteriophage phi-105. Rutberg L; Hoch JA; Spizizen J J Virol; 1969 Jul; 4(1):50-7. PubMed ID: 4980072 [TBL] [Abstract][Full Text] [Related]
57. Construction of improved bacteriophage phi 105 vectors for cloning by transfection in Bacillus subtilis. Jones D; Errington J J Gen Microbiol; 1987 Mar; 133(3):483-92. PubMed ID: 3116161 [TBL] [Abstract][Full Text] [Related]
58. Bacteriophage phi 29 infection of Bacillus subtilis minicells. García JA; Salas M Mol Gen Genet; 1980; 180(3):539-45. PubMed ID: 6780760 [TBL] [Abstract][Full Text] [Related]
59. Transfection with replicating DNA from the temperate Bacillus bacteriophage phi 105 and with T4-ligase treated phi105 DNA: the importance in transfection of being longer than genome-length. Flock JI Mol Gen Genet; 1978 Jul; 163(1):7-15. PubMed ID: 98703 [TBL] [Abstract][Full Text] [Related]
60. DNA repair in B. subtilis: an inducible dimer specific W-reactivation system. Fields PI; Yasbin RE Mol Gen Genet; 1983; 190(3):475-80. PubMed ID: 6410153 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]