These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10496973)

  • 41. Effect of experimental and cold exposure induced hyperthyroidism on H2O2 production and susceptibility to oxidative stress of rat liver mitochondria.
    Venditti P; Pamplona R; Portero-Otin M; De Rosa R; Di Meo S
    Arch Biochem Biophys; 2006 Mar; 447(1):11-22. PubMed ID: 16487474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.
    Custódio JB; Cardoso CM; Santos MS; Almeida LM; Vicente JA; Fernandes MA
    Toxicology; 2009 May; 259(1-2):18-24. PubMed ID: 19428939
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Uric acid and allantoin levels in Down syndrome: antioxidant and oxidative stress mechanisms?
    Zitnanová I; Korytár P; Aruoma OI; Sustrová M; Garaiová I; Muchová J; Kalnovicová T; Pueschel S; Duracková Z
    Clin Chim Acta; 2004 Mar; 341(1-2):139-46. PubMed ID: 14967170
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Simultaneous electrochemical monitoring of metabolites related to the xanthine oxidase pathway using a grinded carbon electrode.
    Hason S; Stepankova S; Kourilova A; Vetterl V; Lata J; Fojta M; Jelen F
    Anal Chem; 2009 Jun; 81(11):4302-7. PubMed ID: 19402672
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Purine compounds in mitochondria: a quantitative evaluation.
    Ziegler M; Dubiel W; Pimenov AM; Tikhonov YuV ; Toguzov RT; Henke W; Gerber G
    Biomed Biochim Acta; 1989; 48(1):57-61. PubMed ID: 2775250
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance.
    Noland RC; Woodlief TL; Whitfield BR; Manning SM; Evans JR; Dudek RW; Lust RM; Cortright RN
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E986-E1001. PubMed ID: 17638705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The biochemistry of nitrogen mobilization: purine ring catabolism.
    Werner AK; Witte CP
    Trends Plant Sci; 2011 Jul; 16(7):381-7. PubMed ID: 21482173
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simultaneous quantification by HPLC of purines in umami soup stock and evaluation of their effects on extracellular and intracellular purine metabolism.
    Fukuuchi T; Iyama N; Yamaoka N; Kaneko K
    Nucleosides Nucleotides Nucleic Acids; 2018; 37(5):273-279. PubMed ID: 29652211
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Scury and purine catabolism].
    Hitier Y
    Int J Vitam Nutr Res; 1974; 44(3):291-301. PubMed ID: 4459283
    [No Abstract]   [Full Text] [Related]  

  • 50. [Purine metabolism in patients with renal failure].
    Hosoya T; Ohno I; Uetake D; Saikawa H
    Nihon Rinsho; 2004 Jun; 62 Suppl 6():136-41. PubMed ID: 15250282
    [No Abstract]   [Full Text] [Related]  

  • 51. Characterization of xanthine oxidase from Cellulosimicrobium funkei possessing hypoxanthine-metabolizing activity.
    Kozono I; Takeuchi M; Kozono S; Satomura A; Aoki W; Hibi M; Ogawa J
    J Appl Microbiol; 2021 Jun; 130(6):2132-2140. PubMed ID: 33090589
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content.
    Jankowska DA; Trautwein-Schult A; Cordes A; Hoferichter P; Klein C; Bode R; Baronian K; Kunze G
    J Appl Microbiol; 2013 Sep; 115(3):796-807. PubMed ID: 23773263
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mitochondrial metabolism of guanine nucleotides. Possible role of guanosine.
    Ziegler M; Dubiel W; Pimenov AM; Tikhonov YV; Toguzov RT; Henke W; Gerber G
    FEBS Lett; 1989 May; 248(1-2):182-4. PubMed ID: 2721675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Purine Metabolism Dysfunctions: Experimental Methods of Detection and Diagnostic Potential.
    Cicero AFG; Fogacci F; Di Micoli V; Angeloni C; Giovannini M; Borghi C
    Int J Mol Sci; 2023 Apr; 24(8):. PubMed ID: 37108190
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of insulin on mitochondrial respiratory control and oxidative phosphorylation of alloxan diabetic rats. A possible new action of insulin on liver mitochondria.
    Katsumata K; Ozawa T
    Nagoya J Med Sci; 1969 Jul; 32(1):45-53. PubMed ID: 5347825
    [No Abstract]   [Full Text] [Related]  

  • 56. Purine metabolites can indicate diabetes progression.
    Varadaiah YGC; Sivanesan S; Nayak SB; Thirumalarao KR
    Arch Physiol Biochem; 2022 Feb; 128(1):87-91. PubMed ID: 31517540
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Validation and steady-state analysis of a power-law model of purine metabolism in man.
    Curto R; Voit EO; Sorribas A; Cascante M
    Biochem J; 1997 Jun; 324 ( Pt 3)(Pt 3):761-75. PubMed ID: 9210399
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of nonparenchymal and parenchymal liver cells in the catabolism of extracellular purines.
    Leser HG; Holstege A; Gerok W
    Hepatology; 1989 Jul; 10(1):66-71. PubMed ID: 2786834
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Metabolite target analysis of human urine combined with pattern recognition techniques for the study of symptomatic gout.
    Liu Y; Yu P; Sun X; Di D
    Mol Biosyst; 2012 Nov; 8(11):2956-63. PubMed ID: 22932763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Intermediate products of purine metabolism in an experimental model of pancreatic necrosis.
    Abramov G; Pozdnyakova Y; Tankibaeva N; Shakeev K; Tusupbekova M; Shestakov D
    Acta Biomed; 2022 Dec; 93(6):e2022298. PubMed ID: 36533751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.