These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10496975)

  • 1. Relationship between the conserved alpha subunit arginine 107 and effects of phosphate on the activity and stability of Vibrio harveyi luciferase.
    Moore C; Lei B; Tu SC
    Arch Biochem Biophys; 1999 Oct; 370(1):45-50. PubMed ID: 10496975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate.
    Li H; Ortego BC; Maillard KI; Willson RC; Tu SC
    Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the functionalities of alphaGlu328 and alphaAla74 of Vibrio harveyi luciferase by site-directed mutagenesis and chemical rescue.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(42):13866-73. PubMed ID: 16229475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the binding of Photobacterium phosphoreum P-flavin by Vibrio harveyi Luciferase.
    Wei CJ; Lei B; Tu SC
    Arch Biochem Biophys; 2001 Dec; 396(2):199-206. PubMed ID: 11747297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic mechanism of luciferase subunit folding and assembly.
    Clark AC; Raso SW; Sinclair JF; Ziegler MM; Chaffotte AF; Baldwin TO
    Biochemistry; 1997 Feb; 36(7):1891-9. PubMed ID: 9048575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase.
    Low JC; Tu SC
    Biochemistry; 2002 Feb; 41(6):1724-31. PubMed ID: 11827516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase.
    Lin LY; Szittner R; Friedman R; Meighen EA
    Biochemistry; 2004 Mar; 43(11):3183-94. PubMed ID: 15023068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed mutagenesis of bacterial luciferase: analysis of the 'essential' thiol.
    Baldwin TO; Chen LH; Chlumsky LJ; Devine JH; Ziegler MM
    J Biolumin Chemilumin; 1989 Jul; 4(1):40-8. PubMed ID: 2678923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(39):12970-7. PubMed ID: 16185065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of iodide on the fluorescence and activity of the hydroperoxyflavin intermediate of Vibrio harveyi luciferase.
    Huang S; Tu SC
    Photochem Photobiol; 2005; 81(2):425-30. PubMed ID: 15588123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophan 250 on the alpha subunit plays an important role in flavin and aldehyde binding to bacterial luciferase. Effects of W-->Y mutations on catalytic function.
    Li Z; Meighen EA
    Biochemistry; 1995 Nov; 34(46):15084-90. PubMed ID: 7578121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase.
    Jeffers CE; Nichols JC; Tu SC
    Biochemistry; 2003 Jan; 42(2):529-34. PubMed ID: 12525181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Luciferase from Vibrio campbellii is more thermostable and binds reduced FMN better than its homologues.
    Suadee C; Nijvipakul S; Svasti J; Entsch B; Ballou DP; Chaiyen P
    J Biochem; 2007 Oct; 142(4):539-52. PubMed ID: 17761697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase alpha subunit.
    Xin X; Xi L; Tu SC
    Biochemistry; 1991 Nov; 30(47):11255-62. PubMed ID: 1958663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity coupling and complex formation between bacterial luciferase and flavin reductases.
    Tu SC
    Photochem Photobiol Sci; 2008 Feb; 7(2):183-8. PubMed ID: 18264585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.
    Jawanda N; Ahmed K; Tu SC
    Biochemistry; 2008 Jan; 47(1):368-77. PubMed ID: 18067321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytically active forms of the individual subunits of Vibrio harveyi luciferase and their kinetic and binding properties.
    Choi H; Tang CK; Tu SC
    J Biol Chem; 1995 Jul; 270(28):16813-9. PubMed ID: 7622495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase.
    Abu-Soud HM; Clark AC; Francisco WA; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Apr; 268(11):7699-706. PubMed ID: 8463299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of the reactive thiol and the proximal non-proline cis-peptide bond in the Structure and function of Vibrio harveyi luciferase.
    Lin LY; Sulea T; Szittner R; Kor C; Purisima EO; Meighen EA
    Biochemistry; 2002 Aug; 41(31):9938-45. PubMed ID: 12146958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Vibrio harveyi luciferase beta subunit functionality and the intersubunit domain by site-directed mutagenesis.
    Xin X; Xi L; Tu SC
    Biochemistry; 1994 Oct; 33(40):12194-201. PubMed ID: 7918440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.