BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 10497141)

  • 41. Detection and characterization of DNA adducts of 3-methylindole.
    Regal KA; Laws GM; Yuan C; Yost GS; Skiles GL
    Chem Res Toxicol; 2001 Aug; 14(8):1014-24. PubMed ID: 11511175
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gender-related differences in the formation of skatole metabolites by specific CYP450 in porcine hepatic S9 fractions.
    Borrisser-PairĂ³ F; Rasmussen MK; Ekstrand B; Zamaratskaia G
    Animal; 2015 Apr; 9(4):635-42. PubMed ID: 25465797
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective dehydrogenation/oxygenation of 3-methylindole by cytochrome p450 enzymes.
    Lanza DL; Yost GS
    Drug Metab Dispos; 2001 Jul; 29(7):950-3. PubMed ID: 11408359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro metabolism of the COX-2 inhibitor DFU, including a novel glutathione adduct rearomatization.
    Yergey JA; Trimble LA; Silva J; Chauret N; Li C; Therien M; Grimm E; Nicoll-Griffith DA
    Drug Metab Dispos; 2001 May; 29(5):638-44. PubMed ID: 11302928
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Characterization of the metabolites of the antidepressant drug nefazodone in human urine and plasma.
    Mayol RF; Cole CA; Luke GM; Colson KL; Kerns EH
    Drug Metab Dispos; 1994; 22(2):304-11. PubMed ID: 8013286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of a cysteinyl adduct of oxidized 3-methylindole from goat lung and human liver microsomal proteins.
    Ruangyuttikarn W; Skiles GL; Yost GS
    Chem Res Toxicol; 1992; 5(5):713-9. PubMed ID: 1446013
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrophilic metabolites of 3-methylindole as toxic intermediates in pulmonary oedema.
    Nocerini MR; Carlson JR; Yost GS
    Xenobiotica; 1984 Jul; 14(7):561-4. PubMed ID: 6506769
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification of new flavone-8-acetic acid metabolites using mouse microsomes and comparison with human microsomes.
    Pham MH; Auzeil N; Regazzetti A; Dauzonne D; Dugay A; Menet MC; Scherman D; Chabot GG
    Drug Metab Dispos; 2007 Nov; 35(11):2023-34. PubMed ID: 17664249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The metabolism of 7-ethylbenz[a]anthracene by rat liver microsomal preparations.
    McKay S; Farmer PB; Cary PD; Grover PL
    Drug Metab Dispos; 1987; 15(5):682-94. PubMed ID: 2891487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. In vitro biotransformation of xanthohumol, a flavonoid from hops (Humulus lupulus), by rat liver microsomes.
    Yilmazer M; Stevens JF; Deinzer ML; Buhler DR
    Drug Metab Dispos; 2001 Mar; 29(3):223-31. PubMed ID: 11181488
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The metabolism of avermectins B1a, H2B1a, and H2B1b by liver microsomes.
    Miwa GT; Walsh JS; VandenHeuvel WJ; Arison B; Sestokas E; Buhs R; Rosegay A; Avermitilis S; Lu AY; Walsh MA; Walker RW; Taub R; Jacob TA
    Drug Metab Dispos; 1982; 10(3):268-74. PubMed ID: 6125361
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isolation of a mercapturate adduct produced subsequent to glutathione conjugation of bioactivated 3-methylindole.
    Skiles GL; Smith DJ; Appleton ML; Carlson JR; Yost GS
    Toxicol Appl Pharmacol; 1991 May; 108(3):531-7. PubMed ID: 2020974
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biotransformation of 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075), a novel antimicrotubule agent, by mouse, rat, dog, and human liver microsomes.
    Yao HT; Wu YS; Chang YW; Hsieh HP; Chen WC; Lan SJ; Chen CT; Chao YS; Chang L; Sun HY; Yeh TK
    Drug Metab Dispos; 2007 Jul; 35(7):1042-9. PubMed ID: 17403915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of the molecular structure of the phenolic primary metabolite of dimetindene in animals and man.
    De Graeve J; Van Cantfort J; Gilard P; Wermeille MM
    Arzneimittelforschung; 1989 May; 39(5):551-5. PubMed ID: 2569307
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rat liver microsomal and mitochondrial metabolism of primaquine in vitro.
    Ni YC; Xu YQ; Wang MJ
    Zhongguo Yao Li Xue Bao; 1992 Sep; 13(5):431-5. PubMed ID: 1300047
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection and structural characterization of glutathione-trapped reactive metabolites using liquid chromatography-high-resolution mass spectrometry and mass defect filtering.
    Zhu M; Ma L; Zhang H; Humphreys WG
    Anal Chem; 2007 Nov; 79(21):8333-41. PubMed ID: 17918967
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Metabolism of olaquindox in rat liver microsomes: structural elucidation of metabolites by high-performance liquid chromatography combined with ion trap/time-of-flight mass spectrometry.
    Liu Z; Huang L; Dai M; Chen D; Wang Y; Tao Y; Yuan Z
    Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1009-16. PubMed ID: 18320546
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vitro metabolism study of combretastatin A-4 in rat and human liver microsomes.
    Aprile S; Del Grosso E; Tron GC; Grosa G
    Drug Metab Dispos; 2007 Dec; 35(12):2252-61. PubMed ID: 17890446
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stereo- and regioselectivity account for the diversity of dehydroepiandrosterone (DHEA) metabolites produced by liver microsomal cytochromes P450.
    Miller KK; Cai J; Ripp SL; Pierce WM; Rushmore TH; Prough RA
    Drug Metab Dispos; 2004 Mar; 32(3):305-13. PubMed ID: 14977864
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [In vitro liver microsomal metabolism of antimalarial primaquine].
    Ni YC; Wang MJ; Xu YQ; Hu-Ling
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 1992; 10(4):275-8. PubMed ID: 1303335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.