These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 10497806)
1. Effects of cysteic acid groups on the gas-phase reactivity and dissociation of [M + 4H]4+ ions from insulin chain B. wing NP; Cassady CJ J Am Soc Mass Spectrom; 1999 Oct; 10(10):928-40. PubMed ID: 10497806 [TBL] [Abstract][Full Text] [Related]
2. Negative ion fragmentation of cysteic acid containing peptides: cysteic acid as a fixed negative charge. Williams BJ; Barlow CK; Kmiec KL; Russell WK; Russell DH J Am Soc Mass Spectrom; 2011 Sep; 22(9):1622-30. PubMed ID: 21953265 [TBL] [Abstract][Full Text] [Related]
3. Effect of cysteic acid position on the negative ion fragmentation of proteolytic derived peptides. Williams BJ; Kmiec KL; Russell WK; Russell DH J Am Soc Mass Spectrom; 2011 Jan; 22(1):31-7. PubMed ID: 21472541 [TBL] [Abstract][Full Text] [Related]
4. Dissociation of multiply charged negative ions for hirudin (54-65), fibrinopeptide B, and insulin A (oxidized). Ewing NP; Cassady CJ J Am Soc Mass Spectrom; 2001 Jan; 12(1):105-16. PubMed ID: 11142354 [TBL] [Abstract][Full Text] [Related]
5. Elucidation of isomeric structures for ubiquitin [M + 12H]12+ ions produced by electrospray ionization mass spectrometry. Cassady CJ; Carr SR J Mass Spectrom; 1996 Mar; 31(3):247-54. PubMed ID: 8799276 [TBL] [Abstract][Full Text] [Related]
6. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 3. Estimating Surface Area Exposure by Deuterium Uptake. Khakinejad M; Kondalaji SG; Donohoe GC; Valentine SJ J Am Soc Mass Spectrom; 2016 Mar; 27(3):462-73. PubMed ID: 26620531 [TBL] [Abstract][Full Text] [Related]
7. Gas-phase reactivity and molecular modeling studies on triply protonated dodecapeptides that contain four basic residues. Cassady CJ J Am Soc Mass Spectrom; 1998 Jul; 9(7):716-23. PubMed ID: 9879381 [TBL] [Abstract][Full Text] [Related]
8. Reactivity and gas-phase acidity determinations of small peptide ions consisting of 11 to 14 amino acid residues. Carr SR; Cassady CJ J Mass Spectrom; 1997 Sep; 32(9):959-67. PubMed ID: 9311149 [TBL] [Abstract][Full Text] [Related]
9. Quantification of cysteine residues following oxidation to cysteic acid in the presence of sodium azide. Manneberg M; Lahm HW; Fountoulakis M Anal Biochem; 1995 Nov; 231(2):349-53. PubMed ID: 8594984 [TBL] [Abstract][Full Text] [Related]
10. Site-specific oxidation of histidine residues in glycated insulin mediated by Cu2+. Cheng RZ; Kawakishi S Eur J Biochem; 1994 Aug; 223(3):759-64. PubMed ID: 8055951 [TBL] [Abstract][Full Text] [Related]
11. Influence of cysteine to cysteic acid oxidation on the collision-activated decomposition of protonated peptides: Evidence for intraionic interactions. Burlet O; Yang CY; Gaskell SJ J Am Soc Mass Spectrom; 1992 May; 3(4):337-44. PubMed ID: 24243044 [TBL] [Abstract][Full Text] [Related]
12. Inter-molecular migration during collisional activation monitored by hydrogen/deuterium exchange FT-ICR tandem mass spectrometry. Hagman C; HÃ¥kansson P; Buijs J; HÃ¥kansson K J Am Soc Mass Spectrom; 2004 May; 15(5):639-46. PubMed ID: 15121192 [TBL] [Abstract][Full Text] [Related]
13. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis. Khakinejad M; Kondalaji SG; Tafreshian A; Valentine SJ J Am Soc Mass Spectrom; 2015 Jul; 26(7):1115-27. PubMed ID: 25895891 [TBL] [Abstract][Full Text] [Related]
14. Infrared spectroscopy and theoretical studies on gas-phase protonated leu-enkephalin and its fragments: direct experimental evidence for the mobile proton. Polfer NC; Oomens J; Suhai S; Paizs B J Am Chem Soc; 2007 May; 129(18):5887-97. PubMed ID: 17428052 [TBL] [Abstract][Full Text] [Related]
15. Top-Down Charge Transfer Dissociation (CTD) of Gas-Phase Insulin: Evidence of a One-Step, Two-Electron Oxidation Mechanism. Li P; Kreft I; Jackson GP J Am Soc Mass Spectrom; 2018 Feb; 29(2):284-296. PubMed ID: 28786096 [TBL] [Abstract][Full Text] [Related]
16. Ion trap collisional activation of disulfide linkage intact and reduced multiply protonated polypeptides. Stephenson JL; Cargile BJ; McLuckey SA Rapid Commun Mass Spectrom; 1999; 13(20):2040-8. PubMed ID: 10510418 [TBL] [Abstract][Full Text] [Related]
17. Probing peptide fragment ion structures by combining sustained off-resonance collision-induced dissociation and gas-phase H/D exchange (SORI-HDX) in Fourier transform ion-cyclotron resonance (FT-ICR) instruments. Somogyi A J Am Soc Mass Spectrom; 2008 Dec; 19(12):1771-5. PubMed ID: 18848466 [TBL] [Abstract][Full Text] [Related]
18. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling. Khakinejad M; Kondalaji SG; Donohoe GC; Valentine SJ J Am Soc Mass Spectrom; 2016 Mar; 27(3):451-61. PubMed ID: 26802030 [TBL] [Abstract][Full Text] [Related]
19. Stability of the homopentameric B subunits of shiga toxins 1 and 2 in solution and the gas phase as revealed by nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry. Kitova EN; Daneshfar R; Marcato P; Mulvey GL; Armstrong G; Klassen JS J Am Soc Mass Spectrom; 2005 Dec; 16(12):1957-68. PubMed ID: 16242954 [TBL] [Abstract][Full Text] [Related]
20. Sequence-scrambling fragmentation pathways of protonated peptides. Bleiholder C; Osburn S; Williams TD; Suhai S; Van Stipdonk M; Harrison AG; Paizs B J Am Chem Soc; 2008 Dec; 130(52):17774-89. PubMed ID: 19055406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]