These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10497820)

  • 41. Nicotinic acetylcholine receptor channels in cat chemoreceptor cells.
    Higashi T; Yamaguchi S; McIntosh JM; Shirahata M
    Adv Exp Med Biol; 2003; 536():285-90. PubMed ID: 14635679
    [No Abstract]   [Full Text] [Related]  

  • 42. Those strange glomus cells.
    Eyzaguirre C
    Adv Exp Med Biol; 1993; 337():123-9. PubMed ID: 8109393
    [No Abstract]   [Full Text] [Related]  

  • 43. Role of protein kinase C in mitochondrial KATP channel-mediated protection against Ca2+ overload injury in rat myocardium.
    Wang Y; Ashraf M
    Circ Res; 1999 May; 84(10):1156-65. PubMed ID: 10347090
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of an NAD(P)H oxidase as a pO2 sensor protein in the rat carotid body.
    Cross AR; Henderson L; Jones OT; Delpiano MA; Hentschel J; Acker H
    Biochem J; 1990 Dec; 272(3):743-7. PubMed ID: 2268299
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [The fine structure of the human carotid body].
    Böck P; Stockinger L; Vyslonzil E
    Z Zellforsch Mikrosk Anat; 1970; 105(4):543-68. PubMed ID: 4919110
    [No Abstract]   [Full Text] [Related]  

  • 46. Are there gap junctions between chief (glomus, type I) cells in the carotid body chemoreceptor? A review.
    Kondo H
    Microsc Res Tech; 2002 Nov; 59(3):227-33. PubMed ID: 12384966
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Low glucose effects on rat carotid body chemoreceptor cells' secretory responses and action potential frequency in the carotid sinus nerve.
    Conde SV; Obeso A; Gonzalez C
    J Physiol; 2007 Dec; 585(Pt 3):721-30. PubMed ID: 17947309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Presynaptic modulation of rat arterial chemoreceptor function by 5-HT: role of K+ channel inhibition via protein kinase C.
    Zhang M; Fearon IM; Zhong H; Nurse CA
    J Physiol; 2003 Sep; 551(Pt 3):825-42. PubMed ID: 12826651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective distribution of multiple protein kinase C isoforms in mouse cerebellar cortex.
    Bareggi R; Narducci P; Grill V; Lach S; Martelli AM
    Biol Cell; 1996; 87(1-2):55-63. PubMed ID: 9004487
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Localization of protein kinase C isozymes in rat colon.
    Jiang YH; Aukema HM; Davidson LA; Lupton JR; Chapkin RS
    Cell Growth Differ; 1995 Nov; 6(11):1381-6. PubMed ID: 8562476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Compartmentation of the cerebellar cortex by protein kinase C delta.
    Chen S; Hillman DE
    Neuroscience; 1993 Sep; 56(1):177-88. PubMed ID: 8232912
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Expression of protein kinase C isoenzymes alpha, betaI, and delta in subtypes of intercalated cells of mouse kidney.
    Kim WY; Jung JH; Park EY; Yang CW; Kim H; Nielsen S; Madsen KM; Kim J
    Am J Physiol Renal Physiol; 2006 Nov; 291(5):F1052-60. PubMed ID: 16735462
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immunochemical and immunocytochemical expression of protein kinase c isoenzymes alpha, delta, epsilon and zeta in primary adherent cultures of chick chondrocytes.
    Grill V; Sandrucci MA; Basa M; Nicolin V; Narducci P; Bareggi R; Martelli AM
    Ital J Anat Embryol; 2002; 107(2):73-84. PubMed ID: 12113528
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein kinase C-delta associates with vimentin intermediate filaments in differentiated HL60 cells.
    Owen PJ; Johnson GD; Lord JM
    Exp Cell Res; 1996 Jun; 225(2):366-73. PubMed ID: 8660925
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Immunocytochemical distribution of Ca(2+)-independent protein kinase C subtypes (delta, epsilon, and zeta) in regenerating axonal growth cones of rat peripheral nerve.
    Kawano S; Okajima S; Mizoguchi A; Tamai K; Hirasawa Y; Ide C
    Neuroscience; 1997 Nov; 81(1):263-73. PubMed ID: 9300419
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Carotid chemoreceptor development in mice.
    Shirahata M; Kostuk EW; Pichard LE
    Respir Physiol Neurobiol; 2013 Jan; 185(1):20-9. PubMed ID: 22634368
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Immunohistochemical demonstration of four subunits of neutrophil NAD(P)H oxidase in type I cells of carotid body.
    Kummer W; Acker H
    J Appl Physiol (1985); 1995 May; 78(5):1904-9. PubMed ID: 7649929
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Immunohistochemical demonstration of protein kinase C isozymes in human brain tumors.
    Todo T; Shitara N; Nakamura H; Takakura K; Ikeda K
    Neurosurgery; 1991 Sep; 29(3):399-403; discussion 403-4. PubMed ID: 1656312
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Localization of protein kinase C isozymes in cardiac myocytes.
    Disatnik MH; Buraggi G; Mochly-Rosen D
    Exp Cell Res; 1994 Feb; 210(2):287-97. PubMed ID: 8299726
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular identification and functional role of voltage-gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo.
    Caceres AI; Obeso A; Gonzalez C; Rocher A
    J Neurochem; 2007 Jul; 102(1):231-45. PubMed ID: 17564680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.