BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10498376)

  • 21. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.
    Krueger E; Popović-Maneski L; Nohama P
    Artif Organs; 2018 Feb; 42(2):208-218. PubMed ID: 28762503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 31P study of fatigue and metabolism in human skeletal muscle with voluntary, intermittent contractions at different forces.
    Newham DJ; Cady EB
    NMR Biomed; 1990 Oct; 3(5):211-9. PubMed ID: 2288860
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters.
    Thrasher A; Graham GM; Popovic MR
    Artif Organs; 2005 Jun; 29(6):453-8. PubMed ID: 15926981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of torque and velocity on erector spinae muscle fatigue and its relationship to changes of electromyogram spectrum density.
    van Dieën JH; Böke B; Oosterhuis W; Toussaint HM
    Eur J Appl Physiol Occup Physiol; 1996; 72(4):310-5. PubMed ID: 8851899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic optimization of stimulation frequency to reduce isometric muscle fatigue using a modified Hill-Huxley model.
    Doll BD; Kirsch NA; Bao X; Dicianno BE; Sharma N
    Muscle Nerve; 2018 Apr; 57(4):634-641. PubMed ID: 28833237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Torque prediction using stimulus evoked EMG and its identification for different muscle fatigue states in SCI subjects.
    Zhang Q; Hayashibe M; Papaiordanidou M; Fraisse P; Fattal C; Guiraud D
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3523-6. PubMed ID: 21097036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Time-Varying Nature of Electromechanical Delay and Muscle Control Effectiveness in Response to Stimulation-Induced Fatigue.
    Downey RJ; Merad M; Gonzalez EJ; Dixon WE
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1397-1408. PubMed ID: 27845664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Voluntary low-force contraction elicits prolonged low-frequency fatigue and changes in surface electromyography and mechanomyography.
    Blangsted AK; Sjøgaard G; Madeleine P; Olsen HB; Søgaard K
    J Electromyogr Kinesiol; 2005 Apr; 15(2):138-48. PubMed ID: 15664144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muscle fatigue: the role of metabolism.
    McCully KK; Authier B; Olive J; Clark BJ
    Can J Appl Physiol; 2002 Feb; 27(1):70-82. PubMed ID: 11880692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rate of fatigue during repeated submaximal contractions of human quadriceps muscle.
    Dolmage T; Cafarelli E
    Can J Physiol Pharmacol; 1991 Oct; 69(10):1410-5. PubMed ID: 1777840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evoked electromyography-based closed-loop torque control in functional electrical stimulation.
    Zhang Q; Hayashibe M; Azevedo-Coste C
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2299-307. PubMed ID: 23529189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Variability of the fatigue response of paralyzed skeletal muscle in relation to the time after spinal cord injury: mechanical and electrophysiological characteristics.
    Gaviria M; Ohanna F
    Eur J Appl Physiol Occup Physiol; 1999 Jul; 80(2):145-53. PubMed ID: 10408326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting fatigue during electrically stimulated non-isometric contractions.
    Marion MS; Wexler AS; Hull ML
    Muscle Nerve; 2010 Jun; 41(6):857-67. PubMed ID: 20229581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quadriceps mechanomyography reflects muscle fatigue during electrical stimulus-sustained standing in adults with spinal cord injury - a proof of concept.
    Ibitoye MO; Hamzaid NA; Abdul Wahab AK; Hasnan N; Davis GM
    Biomed Tech (Berl); 2020 Apr; 65(2):165-174. PubMed ID: 31539346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: A
    Hureau TJ; Broxterman RM; Weavil JC; Lewis MT; Layec G; Amann M
    J Physiol; 2022 Jul; 600(13):3069-3081. PubMed ID: 35593645
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of fatigue on the temporal neuromuscular control of vastus medialis muscle in humans.
    Yeung SS; Au AL; Chow CC
    Eur J Appl Physiol Occup Physiol; 1999 Sep; 80(4):379-85. PubMed ID: 10483810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo 31P NMR studies of paraplegics' muscles activated by functional electrical stimulation.
    Levy M; Kushnir T; Mizrahi J; Itzchak Y
    Magn Reson Med; 1993 Jan; 29(1):53-8. PubMed ID: 8419742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential fatigue of paralyzed thenar muscles by stimuli of different intensities.
    Godfrey S; Butler JE; Griffin L; Thomas CK
    Muscle Nerve; 2002 Jul; 26(1):122-31. PubMed ID: 12115957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in force and intracellular metabolites during fatigue of human skeletal muscle.
    Cady EB; Jones DA; Lynn J; Newham DJ
    J Physiol; 1989 Nov; 418():311-25. PubMed ID: 2621621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of power during fatigue of human leg muscles.
    James C; Sacco P; Jones DA
    J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):237-46. PubMed ID: 7602523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.