BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 10498518)

  • 1. An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating.
    Kolios MC; Worthington AE; Holdsworth DW; Sherar MD; Hunt JW
    Phys Med Biol; 1999 Jun; 44(6):1479-97. PubMed ID: 10498518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental evaluation of two simple thermal models using transient temperature analysis.
    Kolios MC; Worthington AE; Sherar MD; Hunt JW
    Phys Med Biol; 1998 Nov; 43(11):3325-40. PubMed ID: 9832019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature evolution in tissues embedded with large blood vessels during photo-thermal heating.
    Paul A; Narasimhan A; Kahlen FJ; Das SK
    J Therm Biol; 2014 Apr; 41():77-87. PubMed ID: 24679976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation.
    Huang HW; Shih TC; Liauh CT
    Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large blood vessel cooling in heated tissues: a numerical study.
    Kolios MC; Sherar MD; Hunt JW
    Phys Med Biol; 1995 Apr; 40(4):477-94. PubMed ID: 7610110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of large vessel cooling during interstitial laser heating.
    Whelan WM; Wyman DR; Wilson BC
    Med Phys; 1995 Jan; 22(1):105-15. PubMed ID: 7715562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analytical study of 'Poisson conduction shape factors' for two thermally significant vessels in a finite, heated tissue.
    Shrivastava D; Roemer RB
    Phys Med Biol; 2005 Aug; 50(15):3627-41. PubMed ID: 16030387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
    Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J
    Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of variations in blood flow on pulsed doppler ultrasonic heating of the cerebral cortex of the neonatal pig.
    Duggan PM; Murcott MF; McPhee AJ; Barnett SB
    Ultrasound Med Biol; 2000 May; 26(4):647-54. PubMed ID: 10856628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of Thermal Conductivity and Thermal Diffusivity of Porcine and Bovine Kidney Tissues at Supraphysiological Temperatures up to 93 °C.
    Bianchi L; Fiorentini S; Gianella S; Gianotti S; Iadanza C; Asadi S; Saccomandi P
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High intensity focused ultrasound induced in vivo large volume hyperthermia under 3D MRI temperature control.
    Tillander M; Hokland S; Koskela J; Dam H; Andersen NP; Pedersen M; Tanderup K; Ylihautala M; Köhler M
    Med Phys; 2016 Mar; 43(3):1539-49. PubMed ID: 26936737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat transport mechanisms in vascular tissues: a model comparison.
    Baish JW; Ayyaswamy PS; Foster KR
    J Biomech Eng; 1986 Nov; 108(4):324-31. PubMed ID: 3795877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radio-frequency ablation in a realistic reconstructed hepatic tissue.
    Hariharan P; Chang I; Myers MR; Banerjee RK
    J Biomech Eng; 2007 Jun; 129(3):354-64. PubMed ID: 17536902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of tissue heterogeneities and large blood vessels on the thermal exposure induced by short high-power ultrasound pulses.
    Dorr LN; Hynynen K
    Int J Hyperthermia; 1992; 8(1):45-59. PubMed ID: 1545163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms.
    Huang J; Holt RG; Cleveland RO; Roy RA
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2451-8. PubMed ID: 15532675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies.
    Consiglieri L; dos Santos I; Haemmerich D
    Phys Med Biol; 2003 Dec; 48(24):4125-34. PubMed ID: 14727756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature measurements in high thermal gradients: I. The effects of conduction.
    Lyons BE; Samulski TV; Britt RH
    Int J Radiat Oncol Biol Phys; 1985 May; 11(5):951-62. PubMed ID: 3886610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling ultrasound-induced mild hyperthermia of hyperplasia in vascular grafts.
    Brinton MR; Stewart RJ; Cheung AK; Christensen DA; Shiu YT
    Theor Biol Med Model; 2011 Nov; 8():42. PubMed ID: 22054016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.