BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 10498519)

  • 1. Temperature measurement errors with thermocouples inside 27 MHz current source interstitial hyperthermia applicators.
    Kaatee RS; Crezee H; Visser AG
    Phys Med Biol; 1999 Jun; 44(6):1499-511. PubMed ID: 10498519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal properties of capacitively coupled electrodes in interstitial hyperthermia.
    van der Koijk JF; Crezee J; Lagendijk JJ
    Phys Med Biol; 1998 Jan; 43(1):139-53. PubMed ID: 9483628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical thermometry, using the 27 MHz multi-electrode current-source interstitial hyperthermia system in brain tumours.
    Kaatee RS; Nowak PC; van der Zee J; de Bree J; Kanis BP; Crezee H; Levendag PC; Visser AG
    Radiother Oncol; 2001 May; 59(2):227-31. PubMed ID: 11325454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial temperature control with a 27 MHz current source interstitial hyperthermia system.
    Kaatee RS; Crezee H; Kanis BP; Lagendijk JJ; Levendag PC; Visser AG
    Int J Radiat Oncol Biol Phys; 1997 Jan; 37(1):189-97. PubMed ID: 9054895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of applicators for a 27 MHz multielectrode current source interstitial hyperthermia system; impedance matching and effective power.
    Kaatee RS; Crezee J; Kanis AP; Lagendijk JJ; Levendag PC; Visser AG
    Phys Med Biol; 1997 Jun; 42(6):1087-108. PubMed ID: 9194130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implications of using thermocouple thermometry in 27 MHz capacitively coupled interstitial hyperthermia.
    Crezee J; van der Koijk JF; Kaatee RS; Lagendijk JJ
    Phys Med Biol; 1997 Apr; 42(4):637-50. PubMed ID: 9127442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A 27 MHz current source interstitial hyperthermia system for small animals.
    Kaatee RS; Kampmeijer AG; van Hooije CM; van Rhoon GC; Kanis AP; Levendag PC; Visser AG
    Int J Hyperthermia; 1995; 11(6):785-96. PubMed ID: 8586900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of capacitively coupled electrodes for interstitial hyperthermia.
    van der Koijk JF; de Bree J; Crezee J; Lagendijk JJ
    Int J Hyperthermia; 1997; 13(6):607-19. PubMed ID: 9421742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of a capacitive-coupling interstitial hyperthermia system at 27 MHz: study of different applicator configurations.
    Deurloo IK; Visser AG; Morawska M; van Geel CA; van Rhoon GC; Levendag PC
    Phys Med Biol; 1991 Jan; 36(1):119-32. PubMed ID: 2006211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination and validation of the actual 3D temperature distribution during interstitial hyperthermia of prostate carcinoma.
    Raaymakers BW; Van Vulpen M; Lagendijk JJ; De Leeuw AA; Crezee J; Battermann JJ
    Phys Med Biol; 2001 Dec; 46(12):3115-31. PubMed ID: 11768495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3-D temperature distribution in ultrasound hyperthermia with interstitial waveguide applicator.
    Jarosz BJ
    Ann N Y Acad Sci; 1998 Sep; 858():47-55. PubMed ID: 9917806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.
    Chen X; Diederich CJ; Wootton JH; Pouliot J; Hsu IC
    Int J Hyperthermia; 2010 Feb; 26(1):39-55. PubMed ID: 20100052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of the novel ThermoBrachy applicators enabling simultaneous interstitial hyperthermia and high dose rate brachytherapy.
    Androulakis I; Mestrom RMC; Christianen MEMC; Kolkman-Deurloo IK; van Rhoon GC
    Int J Hyperthermia; 2021; 38(1):1660-1671. PubMed ID: 34814784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A feasibility study of interstitial hyperthermia plus external beam radiotherapy in glioblastoma multiforme using the Multi ELectrode Current Source (MECS) system.
    Hulshof MC; Raaymakers BW; Lagendijk JJ; Koot RW; Crezee H; Stalpers LJ; González González D
    Int J Hyperthermia; 2004 Aug; 20(5):451-63. PubMed ID: 15277019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: validation in a heterogeneous phantom.
    Gellermann J; Wlodarczyk W; Ganter H; Nadobny J; Fähling H; Seebass M; Felix R; Wust P
    Int J Radiat Oncol Biol Phys; 2005 Jan; 61(1):267-77. PubMed ID: 15629620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound applicators with integrated catheter-cooling for interstitial hyperthermia: theory and preliminary experiments.
    Diederich CJ
    Int J Hyperthermia; 1996; 12(2):279-97; discussion 299-300. PubMed ID: 8926395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heating pattern of helical microwave intracavitary oesophageal applicator.
    Liu RL; Zhang EY; Gross EJ; Cetas TC
    Int J Hyperthermia; 1991; 7(4):577-86. PubMed ID: 1919153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infrared camera based thermometry for quality assurance of superficial hyperthermia applicators.
    Müller J; Hartmann J; Bert C
    Phys Med Biol; 2016 Apr; 61(7):2646-64. PubMed ID: 26976046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical model of internally cooled interstitial ultrasound applicators for thermal therapy.
    Tyréus PD; Diederich CJ
    Phys Med Biol; 2002 Apr; 47(7):1073-89. PubMed ID: 11996056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.