BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 10498730)

  • 1. Identification of a regulator that controls stationary-phase expression of catalase-peroxidase in Caulobacter crescentus.
    Rava PS; Somma L; Steinman HM
    J Bacteriol; 1999 Oct; 181(19):6152-9. PubMed ID: 10498730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalase-peroxidase of Caulobacter crescentus: function and role in stationary-phase survival.
    Steinman HM; Fareed F; Weinstein L
    J Bacteriol; 1997 Nov; 179(21):6831-6. PubMed ID: 9352936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalase-peroxidase activity is decreased in a Caulobacter crescentus rho mutant.
    Italiani VC; Braz VS; Xiao H; Steinman HM; Marques MV
    FEMS Microbiol Lett; 2010 Feb; 303(1):48-54. PubMed ID: 20002190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of catalase-peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus.
    Italiani VC; da Silva Neto JF; Braz VS; Marques MV
    J Bacteriol; 2011 Apr; 193(7):1734-44. PubMed ID: 21257767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function and stationary-phase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus.
    Schnell S; Steinman HM
    J Bacteriol; 1995 Oct; 177(20):5924-9. PubMed ID: 7592345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    OsterĂ¥s M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator.
    Kojic M; Venturi V
    J Bacteriol; 2001 Jun; 183(12):3712-20. PubMed ID: 11371535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of the stationary phase response regulator SpdR in Caulobacter crescentus.
    da Silva CA; Lourenço RF; Mazzon RR; Ribeiro RA; Marques MV
    BMC Microbiol; 2016 Apr; 16():66. PubMed ID: 27072651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A caulobacter crescentus extracytoplasmic function sigma factor mediating the response to oxidative stress in stationary phase.
    Alvarez-Martinez CE; Baldini RL; Gomes SL
    J Bacteriol; 2006 Mar; 188(5):1835-46. PubMed ID: 16484194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gene coding for a putative sigma 54 activator is developmentally regulated in Caulobacter crescentus.
    Marques MV; Gomes SL; Gober JW
    J Bacteriol; 1997 Sep; 179(17):5502-10. PubMed ID: 9287006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SpdR, a response regulator required for stationary-phase induction of Caulobacter crescentus cspD.
    da Silva CA; Balhesteros H; Mazzon RR; Marques MV
    J Bacteriol; 2010 Nov; 192(22):5991-6000. PubMed ID: 20833806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus.
    Wu J; Newton A
    J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a central regulator of stationary-phase gene expression in Escherichia coli.
    Lange R; Hengge-Aronis R
    Mol Microbiol; 1991 Jan; 5(1):49-59. PubMed ID: 1849609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and spatial regulation of fliP, an early flagellar gene of Caulobacter crescentus that is required for motility and normal cell division.
    Gober JW; Boyd CH; Jarvis M; Mangan EK; Rizzo MF; Wingrove JA
    J Bacteriol; 1995 Jul; 177(13):3656-67. PubMed ID: 7601828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and transcriptional control of Caulobacter crescentus genes encoding proteins containing a cold shock domain.
    Lang EA; Marques MV
    J Bacteriol; 2004 Sep; 186(17):5603-13. PubMed ID: 15317764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA.
    Wargachuk R; Marczynski GT
    J Bacteriol; 2015 Nov; 197(22):3521-32. PubMed ID: 26324449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus.
    Fischer B; Rummel G; Aldridge P; Jenal U
    Mol Microbiol; 2002 Apr; 44(2):461-78. PubMed ID: 11972783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OxyR and the hydrogen peroxide stress response in Caulobacter crescentus.
    Silva LG; Lorenzetti APR; Ribeiro RA; Alves IR; Leaden L; Galhardo RS; Koide T; Marques MV
    Gene; 2019 Jun; 700():70-84. PubMed ID: 30880241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CztR, a LysR-type transcriptional regulator involved in zinc homeostasis and oxidative stress defense in Caulobacter crescentus.
    Braz VS; da Silva Neto JF; Italiani VC; Marques MV
    J Bacteriol; 2010 Oct; 192(20):5480-8. PubMed ID: 20709896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar-Phosphate Metabolism Regulates Stationary-Phase Entry and Stalk Elongation in Caulobacter crescentus.
    de Young KD; Stankeviciute G; Klein EA
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.