These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 10498730)

  • 1. Identification of a regulator that controls stationary-phase expression of catalase-peroxidase in Caulobacter crescentus.
    Rava PS; Somma L; Steinman HM
    J Bacteriol; 1999 Oct; 181(19):6152-9. PubMed ID: 10498730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalase-peroxidase of Caulobacter crescentus: function and role in stationary-phase survival.
    Steinman HM; Fareed F; Weinstein L
    J Bacteriol; 1997 Nov; 179(21):6831-6. PubMed ID: 9352936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalase-peroxidase activity is decreased in a Caulobacter crescentus rho mutant.
    Italiani VC; Braz VS; Xiao H; Steinman HM; Marques MV
    FEMS Microbiol Lett; 2010 Feb; 303(1):48-54. PubMed ID: 20002190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of catalase-peroxidase KatG is OxyR dependent and Fur independent in Caulobacter crescentus.
    Italiani VC; da Silva Neto JF; Braz VS; Marques MV
    J Bacteriol; 2011 Apr; 193(7):1734-44. PubMed ID: 21257767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Function and stationary-phase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus.
    Schnell S; Steinman HM
    J Bacteriol; 1995 Oct; 177(20):5924-9. PubMed ID: 7592345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease.
    OsterĂ¥s M; Stotz A; Schmid Nuoffer S; Jenal U
    J Bacteriol; 1999 May; 181(10):3039-50. PubMed ID: 10322004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of rpoS gene expression in Pseudomonas: involvement of a TetR family regulator.
    Kojic M; Venturi V
    J Bacteriol; 2001 Jun; 183(12):3712-20. PubMed ID: 11371535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic analysis of the stationary phase response regulator SpdR in Caulobacter crescentus.
    da Silva CA; Lourenço RF; Mazzon RR; Ribeiro RA; Marques MV
    BMC Microbiol; 2016 Apr; 16():66. PubMed ID: 27072651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A caulobacter crescentus extracytoplasmic function sigma factor mediating the response to oxidative stress in stationary phase.
    Alvarez-Martinez CE; Baldini RL; Gomes SL
    J Bacteriol; 2006 Mar; 188(5):1835-46. PubMed ID: 16484194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gene coding for a putative sigma 54 activator is developmentally regulated in Caulobacter crescentus.
    Marques MV; Gomes SL; Gober JW
    J Bacteriol; 1997 Sep; 179(17):5502-10. PubMed ID: 9287006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SpdR, a response regulator required for stationary-phase induction of Caulobacter crescentus cspD.
    da Silva CA; Balhesteros H; Mazzon RR; Marques MV
    J Bacteriol; 2010 Nov; 192(22):5991-6000. PubMed ID: 20833806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, identification, and transcriptional specificity of the heat shock sigma factor sigma32 from Caulobacter crescentus.
    Wu J; Newton A
    J Bacteriol; 1996 Apr; 178(7):2094-101. PubMed ID: 8606189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of a central regulator of stationary-phase gene expression in Escherichia coli.
    Lange R; Hengge-Aronis R
    Mol Microbiol; 1991 Jan; 5(1):49-59. PubMed ID: 1849609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal and spatial regulation of fliP, an early flagellar gene of Caulobacter crescentus that is required for motility and normal cell division.
    Gober JW; Boyd CH; Jarvis M; Mangan EK; Rizzo MF; Wingrove JA
    J Bacteriol; 1995 Jul; 177(13):3656-67. PubMed ID: 7601828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and transcriptional control of Caulobacter crescentus genes encoding proteins containing a cold shock domain.
    Lang EA; Marques MV
    J Bacteriol; 2004 Sep; 186(17):5603-13. PubMed ID: 15317764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Caulobacter crescentus Homolog of DnaA (HdaA) Also Regulates the Proteolysis of the Replication Initiator Protein DnaA.
    Wargachuk R; Marczynski GT
    J Bacteriol; 2015 Nov; 197(22):3521-32. PubMed ID: 26324449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus.
    Fischer B; Rummel G; Aldridge P; Jenal U
    Mol Microbiol; 2002 Apr; 44(2):461-78. PubMed ID: 11972783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OxyR and the hydrogen peroxide stress response in Caulobacter crescentus.
    Silva LG; Lorenzetti APR; Ribeiro RA; Alves IR; Leaden L; Galhardo RS; Koide T; Marques MV
    Gene; 2019 Jun; 700():70-84. PubMed ID: 30880241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CztR, a LysR-type transcriptional regulator involved in zinc homeostasis and oxidative stress defense in Caulobacter crescentus.
    Braz VS; da Silva Neto JF; Italiani VC; Marques MV
    J Bacteriol; 2010 Oct; 192(20):5480-8. PubMed ID: 20709896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sugar-Phosphate Metabolism Regulates Stationary-Phase Entry and Stalk Elongation in Caulobacter crescentus.
    de Young KD; Stankeviciute G; Klein EA
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.