BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 10498731)

  • 1. FlbT couples flagellum assembly to gene expression in Caulobacter crescentus.
    Mangan EK; Malakooti J; Caballero A; Anderson P; Ely B; Gober JW
    J Bacteriol; 1999 Oct; 181(19):6160-70. PubMed ID: 10498731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FlbT, the post-transcriptional regulator of flagellin synthesis in Caulobacter crescentus, interacts with the 5' untranslated region of flagellin mRNA.
    Anderson PE; Gober JW
    Mol Microbiol; 2000 Oct; 38(1):41-52. PubMed ID: 11029689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posttranscriptional regulation of Caulobacter flagellin genes by a late flagellum assembly checkpoint.
    Anderson DK; Newton A
    J Bacteriol; 1997 Apr; 179(7):2281-8. PubMed ID: 9079914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The conserved flaF gene has a critical role in coupling flagellin translation and assembly in Caulobacter crescentus.
    Llewellyn M; Dutton RJ; Easter J; O'donnol D; Gober JW
    Mol Microbiol; 2005 Aug; 57(4):1127-42. PubMed ID: 16091049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Caulobacter crescentus flaFG region regulates synthesis and assembly of flagellin proteins encoded by two genetically unlinked gene clusters.
    Schoenlein PV; Lui J; Gallman L; Ely B
    J Bacteriol; 1992 Oct; 174(19):6046-53. PubMed ID: 1400155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of late flagellar gene transcription and cell division by flagellum assembly in Caulobacter crescentus.
    Muir RE; Gober JW
    Mol Microbiol; 2001 Jul; 41(1):117-30. PubMed ID: 11454205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of FlbT in flagellin production in Brucella melitensis.
    Ferooz J; Lemaire J; Letesson JJ
    Microbiology (Reading); 2011 May; 157(Pt 5):1253-1262. PubMed ID: 21273249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flagellar Structures from the Bacterium Caulobacter crescentus and Implications for Phage
    Montemayor EJ; Ploscariu NT; Sanchez JC; Parrell D; Dillard RS; Shebelut CW; Ke Z; Guerrero-Ferreira RC; Wright ER
    J Bacteriol; 2021 Feb; 203(5):. PubMed ID: 33288623
    [No Abstract]   [Full Text] [Related]  

  • 9. The Caulobacter crescentus flagellar gene, fliX, encodes a novel trans-acting factor that couples flagellar assembly to transcription.
    Muir RE; O'Brien TM; Gober JW
    Mol Microbiol; 2001 Mar; 39(6):1623-37. PubMed ID: 11260478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of strains containing mutations in the contiguous flaF, flbT, or flbA-flaG transcription unit and identification of a novel fla phenotype in Caulobacter crescentus.
    Schoenlein PV; Ely B
    J Bacteriol; 1989 Mar; 171(3):1554-61. PubMed ID: 2646286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus.
    Mangan EK; Bartamian M; Gober JW
    J Bacteriol; 1995 Jun; 177(11):3176-84. PubMed ID: 7768816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secretion Relieves Translational Co-repression by a Specialized Flagellin Paralog.
    Ardissone S; Kint N; Petrignani B; Panis G; Viollier PH
    Dev Cell; 2020 Nov; 55(4):500-513.e4. PubMed ID: 33113346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal regulation of genes encoding the flagellar proximal rod in Caulobacter crescentus.
    Boyd CH; Gober JW
    J Bacteriol; 2001 Jan; 183(2):725-35. PubMed ID: 11133968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flagellin redundancy in Caulobacter crescentus and its implications for flagellar filament assembly.
    Faulds-Pain A; Birchall C; Aldridge C; Smith WD; Grimaldi G; Nakamura S; Miyata T; Gray J; Li G; Tang JX; Namba K; Minamino T; Aldridge PD
    J Bacteriol; 2011 Jun; 193(11):2695-707. PubMed ID: 21441504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing flagellar promoter occupancy in wild-type and mutant Caulobacter crescentus by chromatin immunoprecipitation.
    Davis NJ; Viollier PH
    FEMS Microbiol Lett; 2011 Jun; 319(2):146-52. PubMed ID: 21457294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of integration host factor in the transcriptional activation of flagellar gene expression in Caulobacter crescentus.
    Muir RE; Gober JW
    J Bacteriol; 2005 Feb; 187(3):949-60. PubMed ID: 15659673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial regulation of fliP, an early flagellar gene of Caulobacter crescentus that is required for motility and normal cell division.
    Gober JW; Boyd CH; Jarvis M; Mangan EK; Rizzo MF; Wingrove JA
    J Bacteriol; 1995 Jul; 177(13):3656-67. PubMed ID: 7601828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization and ordered expression of Caulobacter genes encoding flagellar basal body rod and ring proteins.
    Dingwall A; Garman JD; Shapiro L
    J Mol Biol; 1992 Dec; 228(4):1147-62. PubMed ID: 1474584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae.
    Prouty MG; Correa NE; Klose KE
    Mol Microbiol; 2001 Mar; 39(6):1595-609. PubMed ID: 11260476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the 25-, 27-, and 29-kilodalton flagellins in Caulobacter crescentus cell motility: method for construction of deletion and Tn5 insertion mutants by gene replacement.
    Minnich SA; Ohta N; Taylor N; Newton A
    J Bacteriol; 1988 Sep; 170(9):3953-60. PubMed ID: 2842293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.