BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10498814)

  • 1. Degradation of maltose by proliferating cells of Desulfovibrio desulfuricans 2198.
    Zolotukhina LM; Davydova MN; Krasilnikova EN
    Biochemistry (Mosc); 1999 Aug; 64(8):952-6. PubMed ID: 10498814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow microcalorimetry investigation of the influence of glucose and maltose on the growth of Streptococcus agalactiae and the production of CAMP factor (protein B).
    Takaisi-Kikuni NB
    Microbios; 1991; 66(268-269):173-85. PubMed ID: 1865834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar metabolism in the extremely halophilic bacterium Salinibacter ruber.
    Oren A; Mana L
    FEMS Microbiol Lett; 2003 Jun; 223(1):83-7. PubMed ID: 12799004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Growth and carbohydrate metabolism of sulfobacilli].
    Karavaĭko GI; Krasil'nikova EN; Tsaplina IA; Bogdanova TI; Zakharchuk LM
    Mikrobiologiia; 2001; 70(3):293-9. PubMed ID: 11450449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix.
    Reher M; Gebhard S; Schönheit P
    FEMS Microbiol Lett; 2007 Aug; 273(2):196-205. PubMed ID: 17559573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The enzyme of carbon metabolism in the thermotolerant sulfobacillus strain K1].
    Karavaĭko GI; Zakharchuk LM; Bogdanova TI; Egorova MA; Tsaplina IA; Krasil'nikova EN
    Mikrobiologiia; 2002; 71(6):755-61. PubMed ID: 12526195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of exogenous factors on the activity of enzymes involved in carbon metabolism in thermoacidophilic bacteria of the genus Sulfobacillus].
    Krasil'nikova EN; Tsaplina IA; Zakharchuk LM; Bogdanova TI
    Prikl Biokhim Mikrobiol; 2001; 37(4):418-23. PubMed ID: 11530664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen sulfide production from elemental sulfur by Desulfovibrio desulfuricans in an anaerobic bioreactor.
    Escobar C; Bravo L; Hernández J; Herrera L
    Biotechnol Bioeng; 2007 Oct; 98(3):569-77. PubMed ID: 17421040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga.
    Selig M; Xavier KB; Santos H; Schönheit P
    Arch Microbiol; 1997 Apr; 167(4):217-32. PubMed ID: 9075622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of gas phase composition on formation of hydrocarbons by Desulfovibrio desulfuricans].
    Bagaeva TV
    Prikl Biokhim Mikrobiol; 2000; 36(2):195-8. PubMed ID: 10780008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell.
    Cooney MJ; Roschi E; Marison IW; Comninellis C; von Stockar U
    Enzyme Microb Technol; 1996 Apr; 18(5):358-65. PubMed ID: 8882004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways for utilization of carbon reserves in Desulfovibrio gigas under fermentative and respiratory conditions.
    Fareleira P; Legall J; Xavier AV; Santos H
    J Bacteriol; 1997 Jun; 179(12):3972-80. PubMed ID: 9190814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct evidence of the Entner-Doudoroff pathway operating in the metabolism of D-glucosamine in bacteria.
    Iwamoto R; Imanaga Y
    J Biochem; 1991 Jan; 109(1):66-9. PubMed ID: 1849886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Transformation of cellulose nitro ester by the sulfate-reducing bacterium Desulfovibrio desulfuricans].
    Petrova OE; Tarasova NB; Davydova MN
    Mikrobiologiia; 2002; 71(3):429-30. PubMed ID: 12138769
    [No Abstract]   [Full Text] [Related]  

  • 15. Hydrogen metabolism in Desulfovibrio desulfuricans strain New Jersey (NCIMB 8313)--comparative study with D. vulgaris and D. gigas species.
    Carepo M; Baptista JF; Pamplona A; Fauque G; Moura JJ; Reis MA
    Anaerobe; 2002 Dec; 8(6):325-32. PubMed ID: 16887677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration.
    Okabe S; Nielsen PH; Charcklis WG
    Biotechnol Bioeng; 1992 Sep; 40(6):725-34. PubMed ID: 18601173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure and stereochemical studies of KD(P)G aldolase from Thermoproteus tenax.
    Pauluhn A; Ahmed H; Lorentzen E; Buchinger S; Schomburg D; Siebers B; Pohl E
    Proteins; 2008 Jul; 72(1):35-43. PubMed ID: 18186475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Xylanase production by Bacillus circulans D1 using maltose as carbon source.
    Bocchini DA; Gomes E; Da Silva R
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):29-37. PubMed ID: 18421584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidative enzymes of sulfate-reducing bacterium desulfovibrio desulfuricans: superoxide dismutase and peroxidases.
    Davydova MN; Sabirova RZ
    Biochemistry (Mosc); 2002 Jul; 67(7):822-5. PubMed ID: 12139483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.