BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10499101)

  • 1. Peroxidase-benzhydroxamic acid complexes: spectroscopic evidence that a Fe-H2O distance of 2.6 A can correspond to hexa-coordinate high-spin heme.
    Smulevich G; Feis A; Indiani C; Becucci M; Marzocchi MP
    J Biol Inorg Chem; 1999 Feb; 4(1):39-47. PubMed ID: 10499101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural interactions between horseradish peroxidase C and the substrate benzhydroxamic acid determined by X-ray crystallography.
    Henriksen A; Schuller DJ; Meno K; Welinder KG; Smith AT; Gajhede M
    Biochemistry; 1998 Jun; 37(22):8054-60. PubMed ID: 9609699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation of residues critical for benzohydroxamic acid binding to horseradish peroxidase isoenzyme C.
    Howes BD; Heering HA; Roberts TO; Schneider-Belhadadd F; Smith AT; Smulevich G
    Biopolymers; 2001; 62(5):261-7. PubMed ID: 11745121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatility of heme coordination demonstrated in a fungal peroxidase. Absorption and resonance Raman studies of Coprinus cinereus peroxidase and the Asp245-->Asn mutant at various pH values.
    Smulevich G; Neri F; Marzocchi MP; Welinder KG
    Biochemistry; 1996 Aug; 35(32):10576-85. PubMed ID: 8756714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of recombinant horseradish peroxidase C and three site-directed mutants, F41V, F41W, and R38K, by resonance Raman spectroscopy.
    Smulevich G; Paoli M; Burke JF; Sanders SA; Thorneley RN; Smith AT
    Biochemistry; 1994 Jun; 33(23):7398-407. PubMed ID: 8003505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton nuclear Overhauser effect study of the heme active site structure of Coprinus macrorhizus peroxidase.
    Dugad LB; Goff HM
    Biochim Biophys Acta; 1992 Jul; 1122(1):63-9. PubMed ID: 1321674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic characterization of mutations at the Phe41 position in the distal haem pocket of horseradish peroxidase C: structural and functional consequences.
    Heering HA; Smith AT; Smulevich G
    Biochem J; 2002 May; 363(Pt 3):571-9. PubMed ID: 11964158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insight into the peroxidase-hydroxamic acid interaction revealed by the combination of spectroscopic and crystallographic studies.
    Indiani C; Santoni E; Becucci M; Boffi A; Fukuyama K; Smulevich G
    Biochemistry; 2003 Dec; 42(47):14066-74. PubMed ID: 14636075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of methyl-substituted benzhydroxamic acids as structural probes of peroxidase substrate binding.
    Veitch NC; Williams RJ
    Eur J Biochem; 1995 May; 229(3):629-40. PubMed ID: 7758456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman investigation of ferric iron in horseradish peroxidase and its aromatic donor complexes at room and low temperatures.
    Smulevich G; English AM; Mantini AR; Marzocchi MP
    Biochemistry; 1991 Jan; 30(3):772-9. PubMed ID: 1988064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding mode of benzhydroxamic acid to Arthromyces ramosus peroxidase shown by X-ray crystallographic analysis of the complex at 1.6 A resolution.
    Itakura H; Oda Y; Fukuyama K
    FEBS Lett; 1997 Jul; 412(1):107-10. PubMed ID: 9257700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties.
    Howes BD; Rodriguez-Lopez JN; Smith AT; Smulevich G
    Biochemistry; 1997 Feb; 36(6):1532-43. PubMed ID: 9063902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance Raman study of the active site of Coprinus cinereus peroxidase.
    Smulevich G; Feis A; Focardi C; Tams J; Welinder KG
    Biochemistry; 1994 Dec; 33(51):15425-32. PubMed ID: 7803406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation of the distal arginine in Coprinus cinereus peroxidase--structural implications.
    Neri F; Indiani C; Welinder KG; Smulevich G
    Eur J Biochem; 1998 Feb; 251(3):830-8. PubMed ID: 9490058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin state and axial ligand bonding in the hydroxide complexes of metmyoglobin, methemoglobin, and horseradish peroxidase at room and low temperatures.
    Feis A; Marzocchi MP; Paoli M; Smulevich G
    Biochemistry; 1994 Apr; 33(15):4577-83. PubMed ID: 8161513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance Raman spectroscopic evidence for heme iron-hydroxide ligation in peroxidase alkaline forms.
    Sitter AJ; Shifflett JR; Terner J
    J Biol Chem; 1988 Sep; 263(26):13032-8. PubMed ID: 3417650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance spectral characterization of the heme active site of Coprinus cinereus peroxidase.
    Lukat GS; Rodgers KR; Jabro MN; Goff HM
    Biochemistry; 1989 Apr; 28(8):3338-45. PubMed ID: 2545257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H NMR investigation of the influence of interacting sites on the dynamics and thermodynamics of substrate and ligand binding to horseradish peroxidase.
    La Mar GN; Hernández G; de Ropp JS
    Biochemistry; 1992 Sep; 31(38):9158-68. PubMed ID: 1390702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic analysis of the binding of aromatic hydroxamic acid analogues to ferric horseradish peroxidase.
    Aitken SM; Turnbull JL; Percival MD; English AM
    Biochemistry; 2001 Nov; 40(46):13980-9. PubMed ID: 11705389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of two types of low-spin heme in horseradish peroxidase isoenzyme A2 at low temperature.
    Howes BD; Feis A; Indiani C; Marzocchi MP; Smulevich G
    J Biol Inorg Chem; 2000 Apr; 5(2):227-35. PubMed ID: 10819468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.