These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10499264)

  • 61. Analysis of trace malachite green, crystal violet, and their metabolites in zebrafish by surface-coated probe nanoelectrospray ionization mass spectrometry.
    Xiao X; Chen C; Deng J; Wu J; He K; Xiang Z; Yang Y
    Talanta; 2020 Sep; 217():121064. PubMed ID: 32498869
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Degradation of diclofop-methyl by pure cultures of bacteria isolated from Manitoban soils.
    Smith-Greenier LL; Adkins A
    Can J Microbiol; 1996 Mar; 42(3):227-33. PubMed ID: 8868229
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The metabolism and mode of action of gentian violet.
    Docampo R; Moreno SN
    Drug Metab Rev; 1990; 22(2-3):161-78. PubMed ID: 2272286
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Isolation of a malachite green-degrading Pseudomonas sp. MDB-1 strain and cloning of the tmr2 gene.
    Li LT; Hong Q; Yan X; Fang GH; Ali SW; Li SP
    Biodegradation; 2009 Nov; 20(6):769-76. PubMed ID: 19468843
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Malachite Green and Crystal Violet Decolorization by Ganoderma lucidum and Pleurotus ostreatus Supernatant and by rGlLCC1 and rPOXA 1B Concentrates: Molecular Docking Analysis.
    Morales-Álvarez ED; Rivera-Hoyos CM; Poveda-Cuevas SA; Reyes-Guzmán EA; Pedroza-Rodríguez AM; Reyes-Montaño EA; Poutou-Piñales RA
    Appl Biochem Biotechnol; 2018 Mar; 184(3):794-805. PubMed ID: 28866857
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Determination of multi-residue for malachite green, gentian violet and their metabolites in aquatic products by high-performance liquid chromatography coupled with molecularly imprinted solid-phase extraction.
    Long C; Mai Z; Yang Y; Zhu B; Xu X; Lu L; Zou X
    J Chromatogr A; 2009 Mar; 1216(12):2275-81. PubMed ID: 19211106
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biodegradation of benzidine based dye Direct Blue-6 by Pseudomonas desmolyticum NCIM 2112.
    Kalme SD; Parshetti GK; Jadhav SU; Govindwar SP
    Bioresour Technol; 2007 May; 98(7):1405-10. PubMed ID: 16822666
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biodegradation of crystal violet (hexamethyl-p-rosaniline chloride) by oxidative red yeasts.
    Kwasniewska K
    Bull Environ Contam Toxicol; 1985 Mar; 34(3):323-30. PubMed ID: 3884067
    [No Abstract]   [Full Text] [Related]  

  • 69. [Culture and biodegradation performance for phenol-degrading bacterium in high phenol concentration].
    Lü RH; Fu Q
    Huan Jing Ke Xue; 2005 Sep; 26(5):147-51. PubMed ID: 16366488
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluation of the efficacy of a bacterial consortium for the removal of color, reduction of heavy metals, and toxicity from textile dye effluent.
    Jadhav JP; Kalyani DC; Telke AA; Phugare SS; Govindwar SP
    Bioresour Technol; 2010 Jan; 101(1):165-73. PubMed ID: 19720521
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Pathway and kinetics of malachite green biodegradation by Pseudomonas veronii.
    Song J; Han G; Wang Y; Jiang X; Zhao D; Li M; Yang Z; Ma Q; Parales RE; Ruan Z; Mu Y
    Sci Rep; 2020 Mar; 10(1):4502. PubMed ID: 32161360
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Kinetics of phenol and m-cresol biodegradation by an indigenous mixed microbial culture isolated from a sewage treatment plant.
    Saravanan P; Pakshirajan K; Saha P
    J Environ Sci (China); 2008; 20(12):1508-13. PubMed ID: 19209640
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interactions during inhibition of growth of Aspergillus parasiticus by gentian violet.
    Hall CL; Hamilton PB
    Poult Sci; 1981 Oct; 60(10):2226-31. PubMed ID: 7329907
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A method for measuring the anoxic biodegradability under denitrifying conditions.
    Vázquez-Rodríguez GA; Beltrán-Hernández RI; Lucho-Constantino CA; Blasco JL
    Chemosphere; 2008 Apr; 71(7):1363-8. PubMed ID: 18096201
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain.
    Ren S; Guo J; Zeng G; Sun G
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1316-21. PubMed ID: 16622679
    [TBL] [Abstract][Full Text] [Related]  

  • 76. RNA Seq analysis of the role of calcium chloride stress and electron transport in mitochondria for malachite green decolorization by Aspergillus niger.
    Gomaa OM; Selim NS; Wee J; Linz JE
    Fungal Genet Biol; 2017 Aug; 105():1-7. PubMed ID: 28552364
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biodegradation of phenol at low temperature using two-phase partitioning bioreactors.
    Guieysse B; Autem Y; Soares A
    Water Sci Technol; 2005; 52(10-11):97-105. PubMed ID: 16459781
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dye degradation by early colonizing marine bacteria from the Arabian Sea, India.
    Kumar M; Kumari A; Vaghani BP; Chaudhary DR
    Arch Microbiol; 2023 Apr; 205(4):160. PubMed ID: 37009922
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Biological decolorization of dye solution containing malachite green by Pandoraea pulmonicola YC32 using a batch and continuous system.
    Chen CY; Kuo JT; Cheng CY; Huang YT; Ho IH; Chung YC
    J Hazard Mater; 2009 Dec; 172(2-3):1439-45. PubMed ID: 19717235
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of two cationic triphenylmethane dyes on the healing of skin incisions. A tensiometric and histologic study in the rat.
    Mobacken H; Zederfeldt B; Ahrén C
    Acta Derm Venereol; 1973; 53(3):161-6. PubMed ID: 4124004
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.