BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10499271)

  • 1. Effectiveness of CSE to counterstain particles and dead bacterial cells with permeabilised membranes: application to viability assessment in waters.
    Catala P; Parthuisot N; Bernard L; Baudart J; Lemarchand K; Lebaron P
    FEMS Microbiol Lett; 1999 Sep; 178(2):219-26. PubMed ID: 10499271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of ChemChrome V6 for bacterial viability assessment in waters.
    Parthuisot N; Catala P; Lemarchand K; Baudart J; Lebaron P
    J Appl Microbiol; 2000 Aug; 89(2):370-80. PubMed ID: 10971771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of laser scanning for the rapid and automated detection of bacteria in water samples.
    Reynolds DT; Fricker CR
    J Appl Microbiol; 1999 May; 86(5):785-95. PubMed ID: 10347873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of viable and membrane-compromised bacteria in freshwater and marine waters based on analytical flow cytometry and nucleic acid double staining.
    Grégori G; Citterio S; Ghiani A; Labra M; Sgorbati S; Brown S; Denis M
    Appl Environ Microbiol; 2001 Oct; 67(10):4662-70. PubMed ID: 11571170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of bacterial contamination in starch and resin-based papermaking chemicals using fluorescence techniques.
    Nohynek L; Saski E; Haikara A; Raaska L
    J Ind Microbiol Biotechnol; 2003 Apr; 30(4):239-44. PubMed ID: 12720090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid, cultivation-independent assessment of microbial viability in drinking water.
    Berney M; Vital M; Hülshoff I; Weilenmann HU; Egli T; Hammes F
    Water Res; 2008 Aug; 42(14):4010-8. PubMed ID: 18694583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow cytometry and cell sorting for yeast viability assessment and cell selection.
    Deere D; Shen J; Vesey G; Bell P; Bissinger P; Veal D
    Yeast; 1998 Jan; 14(2):147-60. PubMed ID: 9483803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a direct fluorescence-based live/dead staining combined with fluorescence in situ hybridization for assessment of survival rate of Bacteroides spp. in drinking water.
    Savichtcheva O; Okayama N; Ito T; Okabe S
    Biotechnol Bioeng; 2005 Nov; 92(3):356-63. PubMed ID: 16028294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Methods of enumeration of bacteria in drinking water].
    Lu W; Wang Y; Zhang XJ
    Huan Jing Ke Xue; 2004 Jul; 25(4):167-9. PubMed ID: 15515960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of flow cytometry and PMA-qPCR to distinguish between membrane intact and membrane compromised bacteria cells in an aquatic milieu.
    Zacharias N; Kistemann T; Schreiber C
    Int J Hyg Environ Health; 2015 Nov; 218(8):714-22. PubMed ID: 25936763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of image-based flow cytometry in bacterial viability analysis using fluorescent probes.
    Pan Y; Kaatz L
    Curr Protoc Microbiol; 2012 Nov; Chapter 2():Unit 2C.5.. PubMed ID: 23184595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LIVE/DEAD BacLight : application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water.
    Boulos L; Prévost M; Barbeau B; Coallier J; Desjardins R
    J Microbiol Methods; 1999 Jul; 37(1):77-86. PubMed ID: 10395466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does the high nucleic acid content of individual bacterial cells allow us to discriminate between active cells and inactive cells in aquatic systems?
    Lebaron P; Servais P; Agogué H; Courties C; Joux F
    Appl Environ Microbiol; 2001 Apr; 67(4):1775-82. PubMed ID: 11282632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems.
    Lebaron P; Parthuisot N; Catala P
    Appl Environ Microbiol; 1998 May; 64(5):1725-30. PubMed ID: 9572943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The application of viable count procedures for measuring viable cells in the various marine environments.
    Altug G; Cardak M; Ciftci PS; Gurun S
    J Appl Microbiol; 2010 Jan; 108(1):88-95. PubMed ID: 19566720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow cytometry as an auxiliary tool for the selection of probiotic bacteria.
    Mudroňová D
    Benef Microbes; 2015; 6(5):727-34. PubMed ID: 25869279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial abundance, activity, and viability in the eutrophic River Warnow, northeast Germany.
    Freese HM; Karsten U; Schumann R
    Microb Ecol; 2006 Jan; 51(1):117-27. PubMed ID: 16395540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enumeration of water-borne bacteria using viability assays and flow cytometry: a comparison to culture-based techniques.
    Hoefel D; Grooby WL; Monis PT; Andrews S; Saint CP
    J Microbiol Methods; 2003 Dec; 55(3):585-97. PubMed ID: 14607402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of a rapid direct viable count method to deep-sea sediment bacteria.
    Quéric NV; Soltwedel T; Arntz WE
    J Microbiol Methods; 2004 Jun; 57(3):351-67. PubMed ID: 15134883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and automated detection of fluorescent total bacteria in water samples.
    Lepeuple AS; Gilouppe S; Pierlot E; De Roubin MR
    Int J Food Microbiol; 2004 May; 92(3):327-32. PubMed ID: 15145591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.