These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10499937)

  • 21. Kinesio taping in stroke: improving functional use of the upper extremity in hemiplegia.
    Jaraczewska E; Long C
    Top Stroke Rehabil; 2006; 13(3):31-42. PubMed ID: 16987790
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Executive Function Is Associated With Off-Line Motor Learning in People With Chronic Stroke.
    Al-Dughmi M; Al-Sharman A; Stevens S; Siengsukon CF
    J Neurol Phys Ther; 2017 Apr; 41(2):101-106. PubMed ID: 28263253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design.
    Timmermans AA; Seelen HA; Willmann RD; Kingma H
    J Neuroeng Rehabil; 2009 Jan; 6():1. PubMed ID: 19154570
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recent progress in physical therapy of the upper-limb rehabilitation after stroke: emphasis on thermal intervention.
    Chen JC; Shaw FZ
    J Cardiovasc Nurs; 2006; 21(6):469-73. PubMed ID: 17293737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cortical brain stimulation: a potential therapeutic agent for upper limb motor recovery following stroke.
    Harvey RL; Nudo RJ
    Top Stroke Rehabil; 2007; 14(6):54-67. PubMed ID: 18174116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. There is plenty of room for motor learning at the bottom of the Fugl-Meyer: Acquisition of a novel bimanual wheelchair skill after chronic stroke using an unmasking technology.
    Sarigul-Klijn Y; Lobo-Prat J; Smith BW; Thayer S; Zondervan D; Chan V; Stoller O; Reinkensmeyer DJ
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():50-55. PubMed ID: 28813792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The application of cycling and cycling combined with feedback in the rehabilitation of stroke patients: a review.
    Barbosa D; Santos CP; Martins M
    J Stroke Cerebrovasc Dis; 2015 Feb; 24(2):253-73. PubMed ID: 25444025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofeedback improves activities of the lower limb after stroke: a systematic review.
    Stanton R; Ada L; Dean CM; Preston E
    J Physiother; 2011; 57(3):145-55. PubMed ID: 21843829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applying principles of motor learning and control to upper extremity rehabilitation.
    Muratori LM; Lamberg EM; Quinn L; Duff SV
    J Hand Ther; 2013; 26(2):94-102; quiz 103. PubMed ID: 23598082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Therapeutic electrical stimulation to improve motor control and functional abilities of the upper extremity after stroke: a systematic review.
    de Kroon JR; van der Lee JH; IJzerman MJ; Lankhorst GJ
    Clin Rehabil; 2002 Jun; 16(4):350-60. PubMed ID: 12061468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactive Bio-feedback Therapy Using Hybrid Assistive Limbs for Motor Recovery after Stroke: Current Practice and Future Perspectives.
    Morishita T; Inoue T
    Neurol Med Chir (Tokyo); 2016 Oct; 56(10):605-612. PubMed ID: 27616320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of contextual interference on feeding training in patients with stroke.
    Jo EJ; Noh DH; Kam KY
    Hum Mov Sci; 2020 Feb; 69():102560. PubMed ID: 31989952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Virtual reality and haptics as a training device for movement rehabilitation after stroke: a single-case study.
    Broeren J; Rydmark M; Sunnerhagen KS
    Arch Phys Med Rehabil; 2004 Aug; 85(8):1247-50. PubMed ID: 15295748
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Driving motor recovery after stroke.
    Richards L; Hanson C; Wellborn M; Sethi A
    Top Stroke Rehabil; 2008; 15(5):397-411. PubMed ID: 19008201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Making music after stroke: using musical activities to enhance arm function.
    van Wijck F; Knox D; Dodds C; Cassidy G; Alexander G; MacDonald R
    Ann N Y Acad Sci; 2012 Apr; 1252():305-11. PubMed ID: 22524372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stroke rehabilitation: strategies to enhance motor recovery.
    O'Dell MW; Lin CC; Harrison V
    Annu Rev Med; 2009; 60():55-68. PubMed ID: 18928333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Development of the stroke rehabilitation apparatus based on EMG-biofeedback].
    Liu Q; Tian X; Li F; Ge G; Tang H; Xu J; Wen H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):417-20. PubMed ID: 19499815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The use of technology-supported mental imagery in neurological rehabilitation: a research protocol.
    Morganti F; Gaggioli A; Castelnuovo G; Bulla D; Vettorello M; Riva G
    Cyberpsychol Behav; 2003 Aug; 6(4):421-7. PubMed ID: 14511455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retraining reaching in chronic stroke with real-time auditory feedback.
    Maulucci RA; Eckhouse RH
    NeuroRehabilitation; 2001; 16(3):171-82. PubMed ID: 11790902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reconsidering the motor recovery plateau in stroke rehabilitation.
    Page SJ; Gater DR; Bach-Y-Rita P
    Arch Phys Med Rehabil; 2004 Aug; 85(8):1377-81. PubMed ID: 15295770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.