BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 10499985)

  • 1. Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophyte.
    Vázquez MD; López J; Carballeira A
    Ecotoxicol Environ Saf; 1999 Sep; 44(1):12-24. PubMed ID: 10499985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the extra and intracellular uptake and discharge of heavy metals in Fontinalis antipyretica transplanted along a heavy metal and pH contamination gradient.
    Fernández JA; Vázquez MD; López J; Carballeira A
    Environ Pollut; 2006 Jan; 139(1):21-31. PubMed ID: 16040171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals: 3. Cd2+ accumulation capacities and biochemical stress response of two Fontinalis species.
    Bleuel C; Wesenberg D; Sutter K; Miersch J; Braha B; Bärlocher F; Krauss GJ
    Sci Total Environ; 2005 Jun; 345(1-3):13-21. PubMed ID: 15919523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites.
    Sousa AI; Caçador I; Lillebø AI; Pardal MA
    Chemosphere; 2008 Jan; 70(5):850-7. PubMed ID: 17764720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of native and transplanted Fontinalis antipyretica Hedw. as biomonitors of water polluted with heavy metals.
    Samecka-Cymerman A; Kolon K; Kempers AJ
    Sci Total Environ; 2005 Apr; 341(1-3):97-107. PubMed ID: 15833244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary.
    Vicente-Martorell JJ; Galindo-Riaño MD; García-Vargas M; Granado-Castro MD
    J Hazard Mater; 2009 Mar; 162(2-3):823-36. PubMed ID: 18620807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-metal interactions between Cd, Cu, Ni, Pb and Zn in water flea Daphnia magna, a stable isotope experiment.
    Komjarova I; Blust R
    Aquat Toxicol; 2008 Nov; 90(2):138-44. PubMed ID: 18838180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accumulation of Al, Mn, Fe, Cu, Zn, Cd and Pb by the bryophyte Scapania undulata in three upland waters of different pH.
    Vincent CD; Lawlor AJ; Tipping E
    Environ Pollut; 2001; 114(1):93-100. PubMed ID: 11444010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of industrial metals on wild fish populations along a metal contamination gradient.
    Pyle GG; Rajotte JW; Couture P
    Ecotoxicol Environ Saf; 2005 Jul; 61(3):287-312. PubMed ID: 15922796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants.
    García-Delgado M; Rodríguez-Cruz MS; Lorenzo LF; Arienzo M; Sánchez-Martín MJ
    Sci Total Environ; 2007 Aug; 382(1):82-92. PubMed ID: 17532025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland.
    Salemaa M; Derome J; Helmisaari HS; Nieminen T; Vanha-Majamaa I
    Sci Total Environ; 2004 May; 324(1-3):141-60. PubMed ID: 15081702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First national survey of atmospheric heavy metal deposition in Hungary by the analysis of mosses.
    Otvös E; Pázmándi T; Tuba Z
    Sci Total Environ; 2003 Jun; 309(1-3):151-60. PubMed ID: 12798100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinctive accumulation patterns of Cd(II), Cu(II), and Cr(VI) in tissue of the South American teleost, pejerrey (Odontesthes bonariensis).
    Carriquiriborde P; Ronco AE
    Aquat Toxicol; 2008 Jan; 86(2):313-22. PubMed ID: 18160111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential extraction of heavy metals during composting of sewage sludge.
    Amir S; Hafidi M; Merlina G; Revel JC
    Chemosphere; 2005 May; 59(6):801-10. PubMed ID: 15811408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multielemental accumulation and its intracellular distribution in tissues of some aquatic birds.
    Nam DH; Anan Y; Ikemoto T; Tanabe S
    Mar Pollut Bull; 2005 Nov; 50(11):1347-62. PubMed ID: 15990121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada.
    Carreras HA; Wannaz ED; Perez CA; Pignata ML
    Environ Res; 2005 Jan; 97(1):50-7. PubMed ID: 15476733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems.
    Vardanyan LG; Ingole BS
    Environ Int; 2006 Feb; 32(2):208-18. PubMed ID: 16213586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.