These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 10499985)

  • 41. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish.
    Chandra Sekhar K; Chary NS; Kamala CT; Suman Raj DS; Sreenivasa Rao A
    Environ Int; 2004 Jan; 29(7):1001-8. PubMed ID: 14592578
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sub-cellular partitioning of Zn, Cu, Cd and Pb in the digestive gland of native Octopus vulgaris exposed to different metal concentrations (Portugal).
    Raimundo J; Vale C; Duarte R; Moura I
    Sci Total Environ; 2008 Feb; 390(2-3):410-6. PubMed ID: 18036638
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigations on ecological effects of heavy metal pollution in Hungary by moss-dwelling water bears (Tardigrada), as bioindicators.
    Vargha B; Otvös E; Tuba Z
    Ann Agric Environ Med; 2002; 9(2):141-6. PubMed ID: 12498580
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina).
    Miretzky P; Saralegui A; Cirelli AF
    Chemosphere; 2004 Nov; 57(8):997-1005. PubMed ID: 15488590
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relating environmental availability to bioavailability: soil-type-dependent metal accumulation in the oligochaete Eisenia andrei.
    Peijnenburg WJ; Baerselman R; de Groot AC; Jager T; Posthuma L; Van Veen RP
    Ecotoxicol Environ Saf; 1999 Nov; 44(3):294-310. PubMed ID: 10581124
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adsorption of Cd, Cu, Ni, Pb and Zn on Sphagnum peat from solutions with low metal concentrations.
    Kalmykova Y; Strömvall AM; Steenari BM
    J Hazard Mater; 2008 Apr; 152(2):885-91. PubMed ID: 17765394
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparison of the properties of polyurethane immobilised Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns.
    Zhang Y; Banks C
    Water Res; 2006 Feb; 40(4):788-98. PubMed ID: 16448685
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Geochemical survey and metal bioaccumulation of three bivalve species (Crassostrea gigas, Cerastoderma edule and Ruditapes philippinarum) in the Nord Medoc salt marshes (Gironde estuary, France).
    Baudrimont M; Schäfer J; Marie V; Maury-Brachet R; Bossy C; Boudou A; Blanc G
    Sci Total Environ; 2005 Jan; 337(1-3):265-80. PubMed ID: 15626396
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of sewage sludge and barley straw treatment on the sorption and retention of Cu, Cd and Pb by coppermine Anthropic Regosols.
    Vega FA; Covelo EF; Andrade ML
    J Hazard Mater; 2009 Sep; 169(1-3):36-45. PubMed ID: 19368998
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A field survey of metal binding to metallothionein and other cytosolic ligands in liver of eels using an on-line isotope dilution method in combination with size exclusion (SE) high pressure liquid chromatography (HPLC) coupled to Inductively Coupled Plasma time-of-flight Mass Spectrometry (ICP-TOFMS).
    Van Campenhout K; Goenaga Infante H; Goemans G; Belpaire C; Adams F; Blust R; Bervoets L
    Sci Total Environ; 2008 May; 394(2-3):379-89. PubMed ID: 18302969
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of heavy metals on the nitrogen metabolism of the aquatic moss Fontinalis antipyretica L. ex Hedw. A 15N tracer study.
    Sutter K; Jung K; Krauss GJ
    Environ Sci Pollut Res Int; 2002; 9(6):417-21. PubMed ID: 12515351
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of pH on the kinetics of intra- and extracellular uptake of Al in Fontinalis antipyretica: changes in the cellular contents of K, Mg, and Ca.
    Vázquez MD; López J; Díaz S; Carballeira A
    Arch Environ Contam Toxicol; 2000 Jul; 39(1):74-85. PubMed ID: 10790505
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intracellular and extracellular ammonium (NH4(+)) uptake and its toxic effects on the aquatic biomonitor Fontinalis antipyretica.
    Vieira AR; Gonzalez C; Martins-Loução MA; Branquinho C
    Ecotoxicology; 2009 Nov; 18(8):1087-94. PubMed ID: 19609671
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biomonitoring of sporadic acidification of rivers on the basis of release of preloaded cadmium from the aquatic bryophyte Fontinalis antipyretica Hedw.
    Carballeira A; Vázquez MD; López J
    Environ Pollut; 2001; 111(1):95-106. PubMed ID: 11202720
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inertia and Resilience in the Responses of the Aquatic Bryophyte Fontinalis antipyretica Hedw. to Thermal Stress.
    Carballeira A; Díaz S; Vázquez MD; López J
    Arch Environ Contam Toxicol; 1998 May; 34(4):343-9. PubMed ID: 9543503
    [TBL] [Abstract][Full Text] [Related]  

  • 57. X-ray photoelectron spectroscopic analysis of lead accumulated in aquatic bryophytes.
    Soma M; Seyama H; Satake K
    Talanta; 1988 Jan; 35(1):68-70. PubMed ID: 18964469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Laser-Induced Fluorescence for Monitoring Environmental Contamination and Stress in the Moss
    Truax K; Dulai H; Misra A; Kuhne W; Fuleky P; Smith C; Garces M
    Plants (Basel); 2023 Aug; 12(17):. PubMed ID: 37687369
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reference bioimaging to assess the phenotypic trait diversity of bryophytes within the family Scapaniaceae.
    Peters K; König-Ries B
    Sci Data; 2022 Oct; 9(1):598. PubMed ID: 36195605
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Perspective of mitigating atmospheric heavy metal pollution: using mosses as biomonitoring and indicator organism.
    Mahapatra B; Dhal NK; Dash AK; Panda BP; Panigrahi KCS; Pradhan A
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29620-29638. PubMed ID: 31463756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.