These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10500131)

  • 61. Oxidative dehydrogenation of ethane on dynamically rearranging supported chloride catalysts.
    Gärtner CA; van Veen AC; Lercher JA
    J Am Chem Soc; 2014 Sep; 136(36):12691-701. PubMed ID: 25118821
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Novel mesoporous mixed Nb-M (M = V, Mo, and Sb) oxides for oxidative dehydrogenation of propane.
    Yuan L; Bhatt S; Beaucage G; Guliants VV; Mamedov S; Soman RS
    J Phys Chem B; 2005 Dec; 109(49):23250-4. PubMed ID: 16375289
    [TBL] [Abstract][Full Text] [Related]  

  • 63. High-throughput experimentation meets artificial intelligence: a new pathway to catalyst discovery.
    McCullough K; Williams T; Mingle K; Jamshidi P; Lauterbach J
    Phys Chem Chem Phys; 2020 May; 22(20):11174-11196. PubMed ID: 32393932
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Heterogeneous dehydrocoupling of amine-borane adducts by skeletal nickel catalysts.
    Robertson AP; Suter R; Chabanne L; Whittell GR; Manners I
    Inorg Chem; 2011 Dec; 50(24):12680-91. PubMed ID: 22103654
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol.
    Sushkevich VL; Ivanova II; Ordomsky VV; Taarning E
    ChemSusChem; 2014 Sep; 7(9):2527-36. PubMed ID: 25123990
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In situ Raman studies during sulfidation, and operando Raman-GC during ammoxidation reaction using nickel-containing catalysts: a valuable tool to identify the transformations of catalytic species.
    Guerrero-Pérez MO; Rojas E; Gutiérrez-Alejandre A; Ramírez J; Sánchez-Minero F; Fernández-Vargas C; Bañares MA
    Phys Chem Chem Phys; 2011 May; 13(20):9260-7. PubMed ID: 21472171
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition.
    Lu J; Fu B; Kung MC; Xiao G; Elam JW; Kung HH; Stair PC
    Science; 2012 Mar; 335(6073):1205-8. PubMed ID: 22403386
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A combinatorial chemistry method for fast screening of perovskite-based NO oxidation catalyst.
    Yoon DY; Lim E; Kim YJ; Cho BK; Nam IS; Choung JW; Yoo S
    ACS Comb Sci; 2014 Nov; 16(11):614-23. PubMed ID: 25321326
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.
    Qi W; Yan P; Su DS
    Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Relationship between Surface Chemistry and Catalytic Performance of Mesoporous γ-Al
    Bai P; Ma Z; Li T; Tian Y; Zhang Z; Zhong Z; Xing W; Wu P; Liu X; Yan Z
    ACS Appl Mater Interfaces; 2016 Oct; 8(39):25979-25990. PubMed ID: 27636162
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Role of lattice oxygen of metal oxides in the dehydrogenation of ethylbenzene under a carbon dioxide atmosphere.
    Saito K; Okuda K; Ikenaga NO; Miyake T; Suzuki T
    J Phys Chem A; 2010 Mar; 114(11):3845-54. PubMed ID: 19719174
    [TBL] [Abstract][Full Text] [Related]  

  • 72. How strain affects the reactivity of surface metal oxide catalysts.
    Amakawa K; Sun L; Guo C; Hävecker M; Kube P; Wachs IE; Lwin S; Frenkel AI; Patlolla A; Hermann K; Schlögl R; Trunschke A
    Angew Chem Int Ed Engl; 2013 Dec; 52(51):13553-7. PubMed ID: 24259425
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Combinatorial and Evolution-Based Methods in the Creation of Enantioselective Catalysts.
    Reetz MT
    Angew Chem Int Ed Engl; 2001 Jan; 40(2):284-310. PubMed ID: 11180317
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Laser-activated membrane introduction mass spectrometry for high-throughput evaluation of bulk heterogeneous catalysts.
    Nayar A; Liu R; Allen RJ; McCall MJ; Willis RR; Smotkin ES
    Anal Chem; 2002 May; 74(9):1933-8. PubMed ID: 12033288
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A parallel colorimetric method for the rapid discovery and optimization of heterogeneous hydrodesulfurization catalysts.
    Staiger CL; Loy DA; Jamison GM; Schneider DA; Cornelius CJ
    J Am Chem Soc; 2003 Aug; 125(33):9920-1. PubMed ID: 12914444
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Active oxygen species of Co-V-O catalysts in propane oxidative dehydrogenation analyzed by FTIR and XPS spectra].
    Xu AJ; Lin Q; Bao Z; Jia ML; Liu LY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Feb; 29(2):346-50. PubMed ID: 19445200
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A rapid screening platform for catalyst discovery in azide-alkyne cycloaddition by ICP-MS/MS.
    He Q; Wang J; Mo Y; Wei C; Fang X; Xing Z; Zhang S; Zhang X
    Talanta; 2017 Apr; 165():39-43. PubMed ID: 28153272
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Supported-nanoparticle heterogeneous catalyst formation in contact with solution: kinetics and proposed mechanism for the conversion of Ir(1,5-COD)Cl/γ-Al2O3 to Ir(0)(~900)/γ-Al2O3.
    Mondloch JE; Finke RG
    J Am Chem Soc; 2011 May; 133(20):7744-56. PubMed ID: 21526773
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Combinatorial catalyst discovery.
    Kuntz KW; Snapper ML; Hoveyda AH
    Curr Opin Chem Biol; 1999 Jun; 3(3):313-9. PubMed ID: 10359716
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Evolution of active catalysts for the selective oxidative dehydrogenation of methanol on Fe2O3 surface doped with Mo oxide.
    Bowker M; Brookes C; Carley AF; House MP; Kosif M; Sankar G; Wawata I; Wells PP; Yaseneva P
    Phys Chem Chem Phys; 2013 Aug; 15(29):12056-67. PubMed ID: 23552323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.