These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10500993)

  • 1. Effects of high pressure on lipids and biomembranes for understanding high-pressure-induced biological phenomena.
    Kato M; Hayashi R
    Biosci Biotechnol Biochem; 1999 Aug; 63(8):1321-8. PubMed ID: 10500993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of biomembrane models.
    Vergoten G
    Biospectroscopy; 1998; 4(5 Suppl):S41-6. PubMed ID: 9787913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared study of the structure and composition of rabbit lens membranes: a comparative analysis of the lipids of the nucleus, cortex and epithelium.
    Lamba OP; Borchman D; Garner WH
    Exp Eye Res; 1993 Jul; 57(1):1-12. PubMed ID: 8405165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid headgroups mediate organization and dynamics in bilayers.
    Greenough KP; Blanchard GJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):2050-6. PubMed ID: 18805049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical properties of lipid bilayer membranes: relevance to membrane biological functions.
    Subczynski WK; Wisniewska A
    Acta Biochim Pol; 2000; 47(3):613-25. PubMed ID: 11310964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; Vácha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of rimantadine on the structure of model and biological membranes.
    Cherny VV; Paulitschke M; Simonova MV; Hessel E; Ermakov YuA ; Sokolov VS; Lerche D; Markin VS
    Gen Physiol Biophys; 1989 Feb; 8(1):23-37. PubMed ID: 2737460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The theory of homeoviscous adaptation of membranes applied to deep-sea animals.
    Macdonald AG; Cossins AR
    Symp Soc Exp Biol; 1985; 39():301-22. PubMed ID: 3938881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles.
    Chen CH; Zuklie BM; Roth LG
    Arch Biochem Biophys; 1998 Mar; 351(1):135-40. PubMed ID: 9500847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomembrane lipids: When physics and chemistry join to shape biological activity.
    Ramos-Martín F; D'Amelio N
    Biochimie; 2022 Dec; 203():118-138. PubMed ID: 35926681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmotic swelling of vesicles: its role in the fusion of vesicles with planar phospholipid bilayer membranes and its possible role in exocytosis.
    Finkelstein A; Zimmerberg J; Cohen FS
    Annu Rev Physiol; 1986; 48():163-74. PubMed ID: 2423021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved electron spin resonance studies of spin-labelled lipids in membranes.
    Bartucci R; Erilov DA; Guzzi R; Sportelli L; Dzuba SA; Marsh D
    Chem Phys Lipids; 2006 Jun; 141(1-2):142-57. PubMed ID: 16564516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solid-state (19)F-NMR of peptides in native membranes.
    Koch K; Afonin S; Ieronimo M; Berditsch M; Ulrich AS
    Top Curr Chem; 2012; 306():89-118. PubMed ID: 21598096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of lipid chain length on molecular interactions between paclitaxel and phospholipid within model biomembranes.
    Zhao L; Feng SS
    J Colloid Interface Sci; 2004 Jun; 274(1):55-68. PubMed ID: 15120278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miscibility of ternary mixtures of phospholipids and cholesterol in monolayers, and application to bilayer systems.
    Stottrup BL; Stevens DS; Keller SL
    Biophys J; 2005 Jan; 88(1):269-76. PubMed ID: 15475588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.
    Nogueira DR; Mitjans M; Busquets MA; Pérez L; Vinardell MP
    Langmuir; 2012 Aug; 28(32):11687-98. PubMed ID: 22816661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of bilayer material properties in function and distribution of membrane proteins.
    McIntosh TJ; Simon SA
    Annu Rev Biophys Biomol Struct; 2006; 35():177-98. PubMed ID: 16689633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of phase transitions of lipid mixtures from bilayer to non-bilayer structures: Model, experimental validation and implication on membrane fusion.
    Xu W; Pincet F
    Chem Phys Lipids; 2010 Mar; 163(3):280-5. PubMed ID: 20018184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.