BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 10501037)

  • 1. Early determinants of lifetime reproductive success differ between the sexes in red deer.
    Kruuk LE; Clutton-Brock TH; Rose KE; Guinness FE
    Proc Biol Sci; 1999 Aug; 266(1429):1655-61. PubMed ID: 10501037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sexually antagonistic genetic variation for fitness in red deer.
    Foerster K; Coulson T; Sheldon BC; Pemberton JM; Clutton-Brock TH; Kruuk LE
    Nature; 2007 Jun; 447(7148):1107-10. PubMed ID: 17597758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus).
    Slate J; Kruuk LE; Marshall TC; Pemberton JM; Clutton-Brock TH
    Proc Biol Sci; 2000 Aug; 267(1453):1657-62. PubMed ID: 11467429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter- and intrasexual variation in aging patterns across reproductive traits in a wild red deer population.
    Nussey DH; Kruuk LE; Morris A; Clements MN; Pemberton JM; Clutton-Brock TH
    Am Nat; 2009 Sep; 174(3):342-57. PubMed ID: 19653847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Live fast, die young: trade-offs between fitness components and sexually antagonistic selection on weaponry in Soay sheep.
    Robinson MR; Pilkington JG; Clutton-Brock TH; Pemberton JM; Kruuk LE
    Evolution; 2006 Oct; 60(10):2168-81. PubMed ID: 17133873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cohort variation in male survival and lifetime breeding success in red deer.
    Rose KE; Clutton-Brock TH; Guinness FE
    J Anim Ecol; 1998 Nov; 67(6):979-86. PubMed ID: 26412376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density-related changes in sexual selection in red deer.
    Clutton-Brock TH; Rose KE; Guinness FE
    Proc Biol Sci; 1997 Oct; 264(1387):1509-16. PubMed ID: 9364790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early life expenditure in sexual competition is associated with increased reproductive senescence in male red deer.
    Lemaître JF; Gaillard JM; Pemberton JM; Clutton-Brock TH; Nussey DH
    Proc Biol Sci; 2014 Oct; 281(1792):. PubMed ID: 25122226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating selection on neonatal traits in red deer using elasticity path analysis.
    Coulson T; Kruuk LE; Tavecchia G; Pemberton JM; Clutton-Brock TH
    Evolution; 2003 Dec; 57(12):2879-92. PubMed ID: 14761065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heritability of fitness in a wild mammal population.
    Kruuk LE; Clutton-Brock TH; Slate J; Pemberton JM; Brotherstone S; Guinness FE
    Proc Natl Acad Sci U S A; 2000 Jan; 97(2):698-703. PubMed ID: 10639142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heritability and cross-sex genetic correlations of early-life circulating testosterone levels in a wild mammal.
    Pavitt AT; Walling CA; Pemberton JM; Kruuk LE
    Biol Lett; 2014 Nov; 10(11):20140685. PubMed ID: 25428929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cross-generational effects of habitat and density on life history in red deer.
    McLoughlin PD; Coulson T; Clutton-Brock T
    Ecology; 2008 Dec; 89(12):3317-26. PubMed ID: 19137939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population density affects sex ratio variation in red deer.
    Kruuk LE; Clutton-Brock TH; Albon SD; Pemberton JM; Guinness FE
    Nature; 1999 Jun; 399(6735):459-61. PubMed ID: 10365956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Father-offspring phenotypic correlations suggest intralocus sexual conflict for a fitness-linked trait in a wild sexually dimorphic mammal.
    Mainguy J; Côté SD; Festa-Bianchet M; Coltman DW
    Proc Biol Sci; 2009 Nov; 276(1675):4067-75. PubMed ID: 19740880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraints on plastic responses to climate variation in red deer.
    Nussey DH; Clutton-Brock TH; Albon SD; Pemberton J; Kruuk LE
    Biol Lett; 2005 Dec; 1(4):457-60. PubMed ID: 17148232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Birth, morphologic, and blood characteristics of free-ranging white-tailed deer neonates.
    Powell MC; DelGiudice GD
    J Wildl Dis; 2005 Jan; 41(1):171-83. PubMed ID: 15827223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inbreeding depression across the lifespan in a wild mammal population.
    Huisman J; Kruuk LE; Ellis PA; Clutton-Brock T; Pemberton JM
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3585-90. PubMed ID: 26979959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Male fertility in natural populations of red deer is determined by sperm velocity and the proportion of normal spermatozoa.
    Malo AF; Garde JJ; Soler AJ; García AJ; Gomendio M; Roldan ER
    Biol Reprod; 2005 Apr; 72(4):822-9. PubMed ID: 15576823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between tooth wear, habitat quality and late-life reproduction in a wild red deer population.
    Nussey DH; Metherell B; Moyes K; Donald A; Guinness FE; Clutton-Brock TH
    J Anim Ecol; 2007 Mar; 76(2):402-12. PubMed ID: 17302848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammalian sex ratios and variation in costs of rearing sons and daughters.
    Gomendio M; Clutton-Brock TH; Albon SD; Guinness FE; Simpson MJ
    Nature; 1990 Jan; 343(6255):261-3. PubMed ID: 2300169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.