These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 10501830)

  • 21. Behavior of the deeply inserted helices in diphtheria toxin T domain: helices 5, 8, and 9 interact strongly and promote pore formation, while helices 6/7 limit pore formation.
    Lai B; Zhao G; London E
    Biochemistry; 2008 Apr; 47(15):4565-74. PubMed ID: 18355037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chaperoning of insertion of membrane proteins into lipid bilayers by hemifluorinated surfactants: application to diphtheria toxin.
    Palchevskyy SS; Posokhov YO; Olivier B; Popot JL; Pucci B; Ladokhin AS
    Biochemistry; 2006 Feb; 45(8):2629-35. PubMed ID: 16489756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of diphtheria toxin fragment A and of elongation factor 2 with cibacron blue.
    Rambelli F; Brigotti M; Sperti S; Montanaro L
    Biosci Rep; 1987 Sep; 7(9):737-43. PubMed ID: 3427221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular Entry of the Diphtheria Toxin Does Not Require the Formation of the Open-Channel State by Its Translocation Domain.
    Ladokhin AS; Vargas-Uribe M; Rodnin MV; Ghatak C; Sharma O
    Toxins (Basel); 2017 Sep; 9(10):. PubMed ID: 28937631
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of the membrane-inserted diphtheria toxin T domain with peptides and its possible implications for chaperone-like T domain behavior.
    Hammond K; Caputo GA; London E
    Biochemistry; 2002 Mar; 41(9):3243-53. PubMed ID: 11863463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Action of diphtheria toxin does not depend on the induction of large, stable pores across biological membranes.
    Alder GM; Bashford CL; Pasternak CA
    J Membr Biol; 1990 Jan; 113(1):67-74. PubMed ID: 2304072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aggregation and fusion of lipid vesicles induced by diphtheria toxin at low pH: possible involvement of the P site and the NAD+ binding site.
    Cabiaux V; Vandenbranden M; Falmagne P; Ruysschaert JM
    Biosci Rep; 1985 Mar; 5(3):243-50. PubMed ID: 4016224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organization of diphtheria toxin in membranes. A hydrophobic photolabeling study.
    D'Silva PR; Lala AK
    J Biol Chem; 2000 Apr; 275(16):11771-7. PubMed ID: 10766800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic transitions of the transmembrane domain of diphtheria toxin: disulfide trapping and fluorescence proximity studies.
    Zhan H; Choe S; Huynh PD; Finkelstein A; Eisenberg D; Collier RJ
    Biochemistry; 1994 Sep; 33(37):11254-63. PubMed ID: 7537085
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes.
    Kagan BL; Finkelstein A; Colombini M
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4950-4. PubMed ID: 6272284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The number of subunits comprising the channel formed by the T domain of diphtheria toxin.
    Gordon M; Finkelstein A
    J Gen Physiol; 2001 Nov; 118(5):471-80. PubMed ID: 11696606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Cytotoxicity of the B subunit of diphtheria toxin to human histocytic lymphoma U937].
    Korotkevych NV; Labyntsev AIu; Kaberniuk AA; Oliĭnyk OS; Romaniuk SI; Kolybo DV; Komisarenko SV
    Ukr Biokhim Zh (1999); 2009; 81(4):69-80. PubMed ID: 20387636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the conformation, hydrophobicity, and model membrane interactions of diphtheria toxin to those of formaldehyde-treated toxin (diphtheria toxoid): formaldehyde stabilization of the native conformation inhibits changes that allow membrane insertion.
    Paliwal R; London E
    Biochemistry; 1996 Feb; 35(7):2374-9. PubMed ID: 8652579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunochemical analysis of the structure of diphtheria toxin shows all three domains undergo structural changes at low pH.
    Tortorella D; Sesardic D; Dawes CS; London E
    J Biol Chem; 1995 Nov; 270(46):27439-45. PubMed ID: 7499200
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of the isolated catalytic domain of diphtheria toxin.
    Weiss MS; Blanke SR; Collier RJ; Eisenberg D
    Biochemistry; 1995 Jan; 34(3):773-81. PubMed ID: 7827036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diphtheria toxin induces leakage of acidic liposomes.
    Lai CS; Kushnaryov V; Panz T; Basosi R
    Arch Biochem Biophys; 1984 Oct; 234(1):1-6. PubMed ID: 6091560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anchoring antibodies to membranes using a diphtheria toxin T domain-ZZ fusion protein as a pH sensitive membrane anchor.
    Nizard P; Liger D; Gaillard C; Gillet D
    FEBS Lett; 1998 Aug; 433(1-2):83-8. PubMed ID: 9738938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Topography of diphtheria Toxin's T domain in the open channel state.
    Senzel L; Gordon M; Blaustein RO; Oh KJ; Collier RJ; Finkelstein A
    J Gen Physiol; 2000 Apr; 115(4):421-34. PubMed ID: 10736310
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Behavior of the N-terminal helices of the diphtheria toxin T domain during the successive steps of membrane interaction.
    Montagner C; Perier A; Pichard S; Vernier G; Ménez A; Gillet D; Forge V; Chenal A
    Biochemistry; 2007 Feb; 46(7):1878-87. PubMed ID: 17249698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of diphtheria toxin with model membranes.
    Chung LA; London E
    Biochemistry; 1988 Feb; 27(4):1245-53. PubMed ID: 3365385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.