BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10502383)

  • 1. Kinetic Study on the Formation of Colloidal Gold in the Presence of Acetylenic Glycol Nonionic Surfactant.
    Sato S; Toda K; Oniki S
    J Colloid Interface Sci; 1999 Oct; 218(2):504-510. PubMed ID: 10502383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal gold-catalyzed reduction of ferrocyanate (III) by borohydride ions: a model system for redox catalysis.
    Carregal-Romero S; Pérez-Juste J; Hervés P; Liz-Marzán LM; Mulvaney P
    Langmuir; 2010 Jan; 26(2):1271-7. PubMed ID: 19824688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasonically induced Au nanoprisms and their size manipulation based on aging.
    Li C; Cai W; Li Y; Hu J; Liu P
    J Phys Chem B; 2006 Feb; 110(4):1546-52. PubMed ID: 16471713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of Au(III) Ions by Aluminum Hydroxide and Their Spontaneous Reduction to Elemental Gold (Au(0)).
    Yokoyama T; Matsukado Y; Uchida A; Motomura Y; Watanabe K; Izawa E
    J Colloid Interface Sci; 2001 Jan; 233(1):112-116. PubMed ID: 11112313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic spectrophotometric method for o-phenylenediamine in the presence of gold(III).
    Altun O; Akbaş H; Dölen E
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Feb; 66(2):499-502. PubMed ID: 16859972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EXAFS studies on the reaction of gold (III) chloride complex ions with sodium hydroxide and glucose.
    Pacławski K; Zajac DA; Borowiec M; Kapusta C; Fitzner K
    J Phys Chem A; 2010 Nov; 114(44):11943-7. PubMed ID: 20958005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism.
    Eustis S; Hsu HY; El-Sayed MA
    J Phys Chem B; 2005 Mar; 109(11):4811-5. PubMed ID: 16863133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and interconversions of digold(I), tetragold(I), digold(II), gold(I)-gold(III) and digold(III) complexes of fluorine-substituted aryl carbanions.
    Bennett MA; Bhargava SK; Mirzadeh N; Privér SH; Wagler J; Willis AC
    Dalton Trans; 2009 Sep; (36):7537-51. PubMed ID: 19727476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas-phase ion-mobility characterization of SAM-functionalized Au nanoparticles.
    Tsai DH; Zangmeister RA; Pease LF; Tarlov MJ; Zachariah MR
    Langmuir; 2008 Aug; 24(16):8483-90. PubMed ID: 18661963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Growth of Gold Nanoparticles in AOT/C(12)E(4)/Isooctane Mixed Reverse Micelles.
    Chiang CL
    J Colloid Interface Sci; 2001 Jul; 239(2):334-341. PubMed ID: 11426997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, structural characterization, and theoretical studies of gold(I) and gold(I)-gold(III) thiolate complexes: quenching of gold(I) thiolate luminescence.
    Bardají M; Calhorda MJ; Costa PJ; Jones PG; Laguna A; Reyes Pérez M; Villacampa MD
    Inorg Chem; 2006 Feb; 45(3):1059-68. PubMed ID: 16441114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic and Kinetic Studies of the Reaction of CO+H(2)O and CO+O(2) and Decomposition of HCOOH on Au/H-Mordenite Catalysts.
    Mohamed MM; Ichikawa M
    J Colloid Interface Sci; 2000 Dec; 232(2):381-388. PubMed ID: 11097774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-dependent color change of colloidal dispersions of gold nanoclusters: effect of stabilizer.
    Shiraishi Y; Arakawa D; Toshima N
    Eur Phys J E Soft Matter; 2002 Jul; 8(4):377-83. PubMed ID: 15010939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective dissolution of the silver component in colloidal Au and Ag multilayers: a facile way to prepare nanoporous gold film materials.
    Lu Y; Wang Q; Sun J; Shen J
    Langmuir; 2005 May; 21(11):5179-84. PubMed ID: 15896068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonochemical Processes and Formation of Gold Nanoparticles within Pores of Mesoporous Silica.
    Chen W; Cai W; Zhang L; Wang G; Zhang L
    J Colloid Interface Sci; 2001 Jun; 238(2):291-295. PubMed ID: 11374924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold (Au(0)): analysis by Mössbauer spectroscopy and XPS.
    Yamashita M; Ohashi H; Kobayashi Y; Okaue Y; Kurisaki T; Wakita H; Yokoyama T
    J Colloid Interface Sci; 2008 Mar; 319(1):25-9. PubMed ID: 18067911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and stabilization of monodisperse colloidal gold by reduction with aminodextran.
    Morrow BJ; Matijević E; Goia DV
    J Colloid Interface Sci; 2009 Jul; 335(1):62-9. PubMed ID: 19419734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ XAFS studies of Au particle formation by photoreduction in polymer solutions.
    Harada M; Einaga H
    Langmuir; 2007 Jun; 23(12):6536-43. PubMed ID: 17497903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selenolate gold complexes with aurophilic Au(I)-Au(I) and Au(I)-Au(III) interactions.
    Canales S; Crespo O; Gimeno MC; Jones PG; Laguna A
    Inorg Chem; 2004 Nov; 43(22):7234-8. PubMed ID: 15500363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.